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Chapter 1

Index Notations

1.1 Matrix multiplication in index notation

It is easy to see that the multiplication of two 2× 2 matrices A,B together
gives the identity

(AB)ik =
2∑
j=1

AijBjk

Convention 1.1.1. Given an expression involving indices we use the follow-
ing conventions

• If an index appears once on the right hand side, it must appear only
once on the left. These are referred to as free indices.

• If an index appears twice on either side, it is summed over. Such indices
are referred to as dummy indices.

This is referred to as the Einstein summation convention.

Remark. Any dummy index can be replaced by another letter without affect-
ing the truth of the expression. The same can not be said of free indices.

Example 1.1.2. Consider again the case of matrix multiplication of A and
B. Then we have the following notation for their multiplication

(AB)ik = AijBjk

where the free indices are i and k. The dummy index j is summed over.
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Example 1.1.3. Let A be an n×m matrix and v an m-dimensional vector.
Then

(Av)i = Aijvj

1.2 General conventions and notation

Convention 1.2.1. We denote the three spacial coordinates of a vector ~x by
xi where i takes the values 1, 2, 3. We also write ~x = (x1, x2, x3).

Convention 1.2.2. Derivatives with respect to the three spacial coordinates
of a vector are written in the following ways

~∇ =

(
∂

∂x1

,
∂

∂x2

,
∂

∂x3

)
= (∂1, ∂2, ∂3)

Definition 1.2.3. We denote the Kronecker delta tensor δij to be the
following matrix

δij =

 1 0 0
0 1 0
0 0 1


ij

Remark. The Kroneker delta is a symmetric tensor. That is to say that

δij = δji

for all i = 1, 2, 3 and j = 1, 2, 3.

Property 1.2.4. Let A... be an index expression. The Kronecker delta sat-
isfies the following two identities

A...i...δik = A...k...

δii = 3

Definition 1.2.5. We denote the epsilon tensor (also known as the Levi-
Civita symbol) to be the one satisfying the following expressions

ε123 = ε312 = ε231 = 1

ε213 = ε321 = ε132 = −1

It is zero otherwise.
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Remark. We note that the epsilon tensor is anti-symmetric. Interchanging
any two indices causes a change of sign:

εijk = −εikj = εkij = −εjki = −εjik

for all i, j, k = 1, 2, 3.

Property 1.2.6. The epsilon tensor and Kronecker delta sastify the follow-
ing identities

εijkεinm = δjnδkm − δjmδkn
εijkεijm = 2δkm

εijkεijk = 6

Definition 1.2.7. We can define the dot product of two vectors ~a and ~b
in terms of indices:

~a ·~b = aibi

Definition 1.2.8. We can define the cross product of two vectors ~a and ~b
in terms of indices:

(~a×~b)i = εijkajbk

Example 1.2.9. Using the above definitions and identities, we can prove the
following

(~a× (~b× ~c))i = εijkaj(~b× ~c)k
= εijkaj(εknmbncm)

= εijkεknmajbncm

= εkijεknmajbncm

= (δinδjm − δimδjn)ajbncm

= δinδjmajbncm − δimδjnajbncm
= δjmajbicm − δjnajbnci
= ajbicj − anbnci
= bi(~a · ~c)− ci(~a ·~b)
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Example 1.2.10. Let r =
√
x2

1 + x2
2 + x2

3 be the length of the vector ~x. We
can derive an identity for its derivative as follows:

∂ir =
1

2

1√
x2

1 + x2
2 + x2

3

∂i(x
2
1 + x2

2 + x2
3)

=
1

2r
· 2 · xi

=
xi
r

Proposition 1.2.11. Let φ be a scalar function. Then curl(∇φ) = 0.

Proof. We have that

(curl(∇φ))i = (~∇×∇φ)i

= εijk∂j(∇φ)k

= εijk∂j∂kφ

= εikj∂k∂jφ

= −εijk∂j∂kφ
= 0

Proposition 1.2.12. Let ~a be a vector. Then div(curl(~a)) = 0

Proof. We have that

div(curl(~a)) = ∂i(curl(~a))i

= ∂iεimn∂man

= εimn∂i∂man

= εmin∂m∂ian

= −εimn∂i∂man
= 0



Chapter 2

Maxwell’s Equations

2.1 Charge, Charge Density, Current Den-

sity

Observation 2.1.1. From experiments, we can observe the following

• Physical objects can carry electric charge which is usually denoted by
q or Q. We can build devices that measure the electric charge carried
by a body.

• The electric charge of a body is independent of other fundamental prop-
erties such as mass. We therefore require a seperate unit to measure it
which is called a Coulomb and is denoted by C.

• Electric charge is additive. If we bring two bodies, of charges q1 and
q2, together their total charge is q1 + q2. Through this, we observe that
electric charge can be either positive or negative. For any process, the
total charge of all bodies involved is conserved.

Definition 2.1.2. Assume that a system consists of charge that is distributed
continuously in space and time. We write ρ(~x, t) for the charge density at
a point ~x ∈ R3 and time t ∈ R.

Remark. Given a charge density ρ(~x, t), we can calculate the total charge
contained in a volume V at a given time t by

Q =

∫
V

ρ(~x, t) d3x
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Definition 2.1.3. Assume that a system consists of charged particles dis-
tributed continuously in space and time with a charge density ρ(~x, t). Fur-
thermore, let each point in space and time have a velocity ~v(~x, t). We define
the current density to be

~j(~x, t) =

 ρ(~x, t)v1(~x, t)
ρ(~x, t)v2(~x, t)
ρ(~x, t)v2(~x, t)


= ρ(~x, t)~v(~x, t)

with units C
sm2 = A

m2 where A is an Ampere.

2.2 Electric and Magnetic Fields

Observation 2.2.1. Consider two static point-like charges with spatial co-
ordinates ~x1 and ~x2. Then the force acting between them is

~Fq1q2 =
1

4πε0

q1q2

r2
12

~x2 − ~x1

r12

where r12 is the absolute distance between them and ε0 = 8.85419×10−12 C2

m2N

is the vacuum permittivity of free space.

Observation 2.2.2. Consider a system of charges and a probe charge q
which is an extra point-like charge that we can move at will through the space.
We observe that the force acting on the probe charge is proportional to q:

~E(~x, t) =
1

q
~F (~x, t)

~E is a vector field and is referred to as the electric field.

Observation 2.2.3. Consider a system of charges and a probe charge moving
through the system with velocity ~v. In addition to the force mentioned above,
we observe another force acting on the charge which is proportional to its
speed |~v| and orthogonal to the direction of the velocity:

~F (~x, t) = q~v × ~B(~x, t)

The quantity ~B is a vector field and is referred to as the magnetic field.
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Definition 2.2.4. Consider a system of charges containing a charge moving
with some velocity ~v. Then the force acting on it is

~F (~x, t) = q
(
~E(~x, t) + ~v(~x, t)× ~B(~x, t)

)
and is referred to as the Lorentz Force.

2.3 Surface and Line Integrals

Definition 2.3.1. We define the volume integral of some function f(~x)
to be the integral over the interior of some volume V:∫

V

f(~x) d3x

Example 2.3.2. The integral of the charge density over some volume V is
a volume integral

QV (t) =

∫
V

ρ(~x, t) d3x

Definition 2.3.3. We define the surface integral of some function f(~x)
to be the integral over some surface S:∫

S

f(~x) · d~S

where d~S is the infinitesimal surface element at the point ~x, t given by

d~S = ~n(~x, t)dS

~n(~x, t) is the unit normal vector at each point ~x, t.

Definition 2.3.4. Let ~K : R3 → R3 be a vector field and ~γ : [a, b] → R3 a
curve. Let C ∈ R3 be the image of the interval [a, b] under ~γ. Then we define

the line integral of ~K over C to be∫
C

~K · d~x =

∫ b

a

~K(~γ(s)) · ∂~γ
∂s
ds
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Remark. The line integral is invariant under reparametrization of the curve.
If a = b then the curve is closed and the integral is denoted by∮

γ

~K · d~x

Example 2.3.5. Consider the point ~x ∈ R3 and let r = |~x|. Let ~K(~x) =
f(r)~x be a vector field and γ = (cos(s), sin(s), 0) where 0 ≤ s ≤ 2π. We
have that∮
γ

~K · d~x =

∫ 2π

0

~K(γ(s)) · ∂~γ
∂s

ds

=

∫ 2π

0

f
(√

cos2(s) + sin2(s)
)

(cos(s), sin(s), 0) · (−sin(s), cos(s), 0) ds

= f(1)

∫ 2π

0

(−cos(s)sin(s) + sin(s)cos(s)) ds

= 0

Example 2.3.6. Consider the point ~x ∈ R3 and let r = |~x|. Let ~K(~x) =
f(r)(y,−x, 0) be a vector field and γ = (cos(s), sin(s), 0) where 0 ≤ s ≤ 2π.
We have that∮
γ

~K · d~x =

∫ 2π

0

~K(γ(s)) · ∂~γ
∂s

ds

=

∫ 2π

0

f
(√

cos2(s) + sin2(s)
)

(sin(s),−cos(s), 0) · (−sin(s), cos(s), 0) ds

= f(1)

∫ 2π

0

(−sin2(s)− cos2(s)) ds

= −f(1)

∫ 2π

0

ds

= −2πf(1)

2.4 Stoke’s Theorem

Theorem 2.4.1. (Fundamental Theorem of Calculus) Let a, b ∈ R where
a < b. Let f(x) : R→ R be a function and f ′(x) its derivative. Then∫ b

a

f ′(x) dx = f(b)− f(a)
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Proposition 2.4.2. Let φ : Rm → R be a scalar function and ~γ(s) a curve

between two points a and b. Let ~a = ~γ(a) and ~b = ~γ(b). Then∫
γ

~∇φ · d~x = φ(~b)− φ(~a)

Proof. We have that∫
γ

~∇φ · d~x =

∫
γ

∂iφ(~γ(s))
∂γi(s)

∂s
ds

=

∫ b

a

φ′(~γ(s)) ds

= φ(~γ(b))− φ(~γ(a))

= φ(~b)− φ(~a)

Theorem 2.4.3. (Stoke’s Theorem)

Let ~K be a vector field and S a surface. Then∫
S

(~∇× ~K) · d~S =

∮
∂S

~K · d~x

where ∂S is the curve given by the boundary of the surface. The direction of
the curve should be chosen depending on the orientation of the unit normal
vector.

Theorem 2.4.4. (Divergence Theorem)

Let ~K be a vector field and V a volume. Then∫
V

(~∇ · ~K) d3x =

∮
S=∂V

~K · d~S

where ∂V is the surface given by the boundary of the volume. The unit normal
vector to the surface must point outside the integration region.
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2.5 Maxwell’s Equations

Observation 2.5.1. Maxwell observed that given a system of charges the
charge density ρ, current density ~j and corresponding electric field ~E and
magnetic field ~B satisfy the following equations

• ~∇× ~E = −∂t ~B

• ~∇× ~B = 1
c2
∂t ~E + 1

c2ε0
~j

• ~∇ · ~E = ρ
ε0

• ~∇ · ~B = 0

where c is the speed of light.

2.6 The Continuity Equation

Proposition 2.6.1. Consider a system of charges. Then the charge density
ρ and current density ~j satisfy the following equation:

∂tρ = −~∇ ·~j

Proof. This follows from the Maxwell Equations. M2 and M3 can be written
in the forms

~j = c2ε0

(
~∇× ~B

)
− ε0∂t ~E

ρ = ε0

(
~∇ · ~E

)
It follows that

~∇ ·~j = ε0c
2~∇ ·

(
~∇× ~B

)
− ε∂t~∇ · ~E (2.1)

∂tρ = ε0∂t~∇ · ~E (2.2)

Since the divergence of the curl of a vector vanishes, the first term of Equation
(2.1) equals to 0. The proposition follows by adding Equations (2.1) and
(2.2).

Remark. The above equation is referred to as the continuity equation. It
says that if charge is moving out of a volume then the amount of charge in
the volume will decrease so that the rate of change of charge is negative.
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2.7 Integral Form of Maxwell’s Equations

Proposition 2.7.1. Consider the 3rd Maxwell equation ~∇ · ~E = ρ
ε0

. Then it
takes the following ’integral form’:∮

S

~E · d~S =
Q

ε0

where S is a closed surface and Q is the charge contained in S

Proof. We start by integrating both sides of M3 over some volume V:

~∇ · ~E =
ρ

ε0∫
V

~∇ · ~E d3x =

∫
V

ρ

ε0

d3x

We first note that the right hand side is exactly the amount of charge con-
tained inside the volume V. We can then apply the divergence theorem to
the left hand side to get ∮

S

~E · d~S =
QV

ε0

where S is the surface given by the boundary of the volume V and QV is the
charge contained inside V.

Remark. The above equivalence is referred to as Gauss’ Law.

Example 2.7.2. Consider a point-like charge at the origin ~x = 0. Since the
charge has no distinguishable direction, its resulting electric field ~E should be
spherically symmetric. This implies that | ~E(~x)| = | ~E(~x′)| when |~x| = |~x′|.
The force acting on any probe charge should be directed towards or away
from the origin which implies that ~E is directed along ~x. We can, therefore,
assume that the electric field is of the form

~E = f(r)
~x

r

where r = |~x|. Using Gauss’ Law and a sphere of radius r as the surface S
with unit normal vector ~n. we get

Q

ε0

=

∮
S

~E · d~S

=

∮
S

~E · ~n dS
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Now since the electric field points in the same direction as the normal vector
of the sphere, we have that∮

S

~E · ~n ds =

∮
S

| ~E||~n|cos(0) ds

=

∮
S

| ~E| ds

= | ~E|
∮
S

ds

= 4π| ~E|r2

= 4πf(r)r2

Inserting this back into the equation for the electric field, we get

~E(r) =
Q~x

4πε0r3

Example 2.7.3. Consider a uniformly charged plane over the xy plane. To
represent charge we use the charge per surface area σ = Q

A
. We want to find

the electric field at some point of vertical distance y from the plane.
Consider a unit cylinder whose top intersects the points (0, y, 0) and (0,−y, 0).
We note that there is no flux through the sides of the cylinder as the normal
at such points is orthogonal to the direction of the electric field. By Gauss’
Law, we have that

Q

ε0

=
Aσ

ε0

=

∮
S

~E · d~S

= 2AE(y)

We thus see that E(y) = σ
2ε

. Hence

~E = sgn(y)
σ~ey
2ε0



Chapter 3

Vector and Scalar Potentials,
Gauge Invariance

3.1 Vector potential

Theorem 3.1.1. Let ~B be a vector field. Then the following four statements
are equivalent:

1. ~∇ · ~B = 0

2.
∫
S
~B ·d~S is independent of the choice of surface for a given fixed bound-

ary

3.
∮
S
~B · d~S = 0 for any closed surface

4. ~B = ~∇× ~A for some ~A called a vector potential

Proof. We shall prove the theorem in the order (4) =⇒ (1) =⇒ (4), (1) =⇒
(3) =⇒ (1), (2) =⇒ (3) =⇒ (2)

(4) =⇒ (1) Assume that ~B = ~∇ × ~A for some vector field ~A. Then it

13
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follows automatically from the properties of vector fields that ~∇ · ~B = 0.

(1) =⇒ (4) Assume that ~∇ · ~B = 0. We need to exhibit an ~A such that
~B = ~∇× ~A. Consider the following vector:

A1 =

∫ z

0

B2(x, y, z′)dz′ +

∫ y

0

B3(x, y′, 0)dy′

A2 = −
∫ z

0

B1(x, y, z′)dz′

A3 = 0

We claim that ~B = ~∇× ~A. Indeed

∂yA3 − ∂zA2 = ∂z

∫ z

0

B1(x, y, z′)dz′ = B1(x, y, z)

∂zA1 − ∂xA3 = ∂z

∫ z

0

B2(z, y, z′)dz′ = B2(x, y, z)

∂xA2 − ∂yA1 = −
∫ z

0

(∂xB1(x, y, z′) + ∂yB2(x, y, z′))dz′ − ∂y
∫ y

0

B3(x, y′, 0)dy′

=

∫ z

0

∂zB3(x, y, z′)dz′ +B3(x, y, 0) = B3(x, y, z)

where in the last equation we used the fact that ~∇· ~B = ∂xB1+∂yB2+∂zB3 =
0.

(1) =⇒ (3) =⇒ (1) By the divergence theorem, we have that∮
S

~B · d~S =

∫
V

~∇ · ~B d3x = 0

where the volume V is the one enclosed by S.

(2) =⇒ (3) =⇒ (2) Consider two surfaces S1 and S2 with the same bound-
ary. Then they must form a closed surface. Therefore we have that∫

S1

~B · d~S −
∫
S2

~B · d~S =

∮
S1+S2

~B · d~S = 0

where the minus sign is because of the change of orientation of one of the
surfaces.
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3.2 Scalar Potential

Theorem 3.2.1. Let ~K be a vector field. Then the following four statements
are equivalent

1. ~∇× ~K = 0

2.
∫
γ
~K · d~x is independent of the choice of path for a given fixed surface

3.
∮
γ
~K · d~x for a closed path γ

4. ~K = −~∇φ for some φ called a scalar potential

Proof. We shall prove the theorem only for (4) =⇒ (1) =⇒ (4). The rest
follows in a similar case to the previous theorem.

(4) =⇒ (1) Assume that ~K = −~∇φ for some scalar function φ. We need

to show that ~∇× ~K = 0. We have that

[~∇× (−~∇φ)]i = −εijk∂j(~∇φ)j

= −εijk∂j∂kφ

This is just 0 by the properties of the epsilon tensor and differential operators
as shown earlier on in the notes.

(1) =⇒ (4) Assume that ~∇× ~K = 0. We need to exhibit a scalar function

φ such that ~K = ~∇φ. Consider the following function

φ(~x) = −
∫
γ

~K(~x′) dx′

where γ is a path between the origin and ~x. We claim that ~K = ~∇φ.
We first show that the definition of φ does not depend on the contour chosen.
Consider two contours γ1 and γ2 from the origin to ~x. We have that∫

γ1

~K(~x′) · d~x′ −
∫
γ2

~K(~x′) · d~x′ =
∮
γ1−γ2

~K(~x′) · d~x′
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Now using Stoke’s theorem, we see that∮
γ1−γ2

~K(~x′) · d~x′ =
∫
Sγ1−γ2

(
~∇× ~K

)
· d~x = 0

where we have used the fact that ~∇ × ~K = 0. It hence follows that φ is
independent of parametrisation of the path.
We now calculuate the derivative component-wise:

∂xφ(~x) = − lim
ε→0

φ(~x+ ε~ex)− φ(~x)

ε

= − lim
ε→0

1

ε

(∫
γ1

~K(~x′) · d~x′ −
∫
γ2

~K(~x′) · d~x′
)

where γ1 runs from the origin to ~x + ε~ex and γ2 runs from the origin to ~x.
Combining these two contours, we get a path γ which runs from ~x to ~x+ ε~ex:

∂xφ(~x) = − lim
ε→0

1

ε

(∫
γ1

~K(~x′) · d~x′ −
∫
γ2

~K(~x′) · d~x′
)

= − lim
ε→0

1

ε

(∫
γ

~K(~x′) · d~x′
)

= − lim
ε→0

1

ε

(∫ b

a

~K(γ(s))
∂γ(s)

∂s
ds

)
Since the definition of φ does not depend on the shape of the contour, we
can choose γ such that it is a straight line connecting the two points ~x and
~x+ ε~ex. Hence the derivative ∂γ

∂s
is 1. Therefore

∂xφ(~x) = − lim
ε→0

1

ε

(∫ b

a

~K(γ(s))
∂γ(s)

∂s
ds

)
= − lim

ε→0

1

ε

(∫ b

a

~K(γ(s)) ds

)
= − lim

ε→0

1

ε

(
~K(~x+ ε~ex)− ~K(~x)

)
= − lim

ε→0

1

ε

(
~K(~x) + ε ~Kx(~x) + o(|ε2|)− ~K(~x)

)
= − lim

ε→0

1

ε

(
ε ~Kx(~x) + o(|ε2|)

)
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= − lim
ε→0

(
~Kx(~x) +

1

ε
o(|ε2|)

)
= − lim

ε→0

(
~Kx(~x) + o(|ε|)

)
= − ~Kx(~x)

We can apply the same steps to y and z to prove the claim.

3.3 Maxwell’s Equations in terms of ~A and φ

Proposition 3.3.1. Given a system of charges, Maxwell’s first and fourth
equations satisfy the following equation

~E = −~∇φ− ∂t ~A

for some scalar function φ and vector field ~A.

Proof. M4 states that ~∇ · ~B = 0. By Section 3.1, we know that there exists
a vector potential ~A such that ~B = ~∇× ~A.
Now, M1 states that ~∇ × ~E = −∂t ~B. Combining this with the above, we
have that

~∇× ~E = −∂t
(
~∇× ~A

)
= −~∇×

(
∂t ~A
)

Rearranging we get that

~∇× ~E + ~∇×
(
∂t ~A
)

= 0

~∇×
(
E + ∂t ~A

)
= 0

By Section 3.2, it follows that

~E + ∂t ~A = −~∇φ
~E = −~∇φ− ∂t ~A
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Proposition 3.3.2. Given a system of charges, Maxwell’s third equation
satisfies the following equation

−∆φ− ∂t~∇ · ~A =
ρ

ε0

Proof. Maxwell’s third equation says that

~∇ · ~E =
ρ

ε0

By the previous proposition, we have that

ρ

ε0

= ~∇ · ~E

= ~∇ ·
(
−~∇φ− ∂t ~A

)
= −∆φ− ∂t~∇ · ~A

Proposition 3.3.3. Given a system of charges, Maxwell’s second equation
satisfies the following equation

~∇
(
~∇ · ~A+

1

c2
∂tφ

)
−∆ ~A+

1

c2
∂2
t
~A =

~j

c2ε0

Proof. Maxwell’s second equation says that

~∇× ~B =
1

c2
∂t ~E +

1

c2ε0

~j

We see that

~j

c2ε0

= ~∇× ~B − 1

c2
∂t ~E

= ~∇×
(
~∇× ~A

)
− 1

c2
∂t

(
−~∇φ− 1

c2
∂t ~A

)
= ~∇×

(
~∇× ~A

)
+

1

c2
~∇∂tφ+

1

c2
∂2
t
~A

= ~∇
(
~∇ · ~A

)
−∆ ~A+

1

c2
~∇∂tφ+

1

c2
∂2
t
~A

= ~∇
(
~∇ · ~A+

1

c2
∂tφ

)
−∆ ~A+

1

c2
∂2
t
~A
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where we have used the following relation

~∇×
(
~∇× ~K

)
= ~∇

(
~∇ · ~K

)
−∆ ~K

3.4 Gauge Transformations and Gauge Invari-

ance

The transformations from the potentials ~E, ~B to the fields ~A, φ are not
unique. There could be multiple potentials which give rise to the same fields.
They are physically indistinguishable snce only ~E and ~B are measurable
quantities.
Assume that two vector potentials ~A 6= ~A′ result in the same magnetic field
~B. We have that B = ~∇× ~A = ~∇× ~A′. It follows that 0 = ~∇× ( ~A − ~A′).

Then Theorem 3.2.1 implies that ~A− ~A′ = −~∇Λ for some scalar function Λ.
After rearranging this equation, it follows that

~A′ = ~A+ ~∇Λ (3.1)

Hence any transformation of ~A that leaves ~B invariant must involve only
the gradient of some scalar function. However, this transformation may
not necessarily leave ~E invariant. In order to achieve this, we assume the
following

~E = −~∇φ− ∂t ~A = −~∇φ′ − ∂t ~A′

for some scalar functions φ 6= φ′ and vector fields ~A 6= ~A′. By the above
analysis, we know that ~A′ must differ from ~A by the gradient of a scalar
function Λ. Therefore

− ~∇φ− ∂t ~A = −~∇φ′ − ∂t
(
~A+ ~∇Λ

)
⇐⇒ ~∇φ′ − ~∇φ = ∂t ~A− ∂t

(
~A+ ~∇Λ

)
⇐⇒ ~∇φ′ − ~∇φ = −∂t~∇Λ

⇐⇒ ~∇ (φ′ − φ) = ~∇ (−∂tΛ)

⇐⇒ φ′ − φ = −∂tΛ (3.2)
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Definition 3.4.1. Let ~A be a vector potential for the magnetic field ~B and φ
a scalar potential for the electric field. Consider a scalar function Λ. Then
the transformations

~A′ = ~A+ ~∇Λ

φ′ = φ− ∂tΛ

are called gauge transformations. They give rise to a vector potential ~A′

and scalar potential φ′ that leave ~B and ~E invariant.

3.5 Lorentz Gauge

We can reduce the complexity of the equations found in Section 3.3 using the
information we deduced in Section 3.2. In particular, if we can find gauge
transformations that satisfy the Lorentz Gauge condition

~∇ · ~A+
1

c2
∂tφ = 0

then the equations in Section 3.3 can be reduced to simpler forms.

Theorem 3.5.1. Let ~A be a vector field and φ a scalar field. Then we can
always find a scalar field Λ such that the Lorentz Gauge condition

~∇ · ~A′ + 1

c2
∂tφ
′ = 0

is satisfied where ~A′ = ~A+ ~∇Λ and φ′ = φ− ∂tΛ

Proof. If ~∇· ~A+ 1
c2
∂tφ = 0 then we can choose Λ = 0 and we are done. Hence

assume that ~∇ · ~A+ 1
c2
∂tφ = ψ for some non-zero ψ. Then

ψ = ~∇ ·
(
~A′ − ~∇Λ

)
+

1

c2
∂t(φ

′ + ∂tΛ)

=⇒ ~∇′ + 1

c2
∂tφ
′ = ψ + ∆Λ− 1

c2
∂2
t Λ

It is known that the equation

−∆Λ +
1

c2
∂2
t Λ = ψ

can always be solved for Λ. Hence we can always find a scalar Λ such that
the Lorentz Gauge condition is satisfied.
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In light of the previous theorem, we can always assume that the Lorentz
Gauge condition is satisfied. This allows us to simplify the equations into
the following forms:

−∆ ~A+
1

c2
∂2
t
~A =

~j

c2ε0

−∆φ+
1

c2
∂2
t φ =

ρ

ε0

~∇ · ~A+
1

c2
∂tφ = 0



Chapter 4

Distributions and Generalized
Functions

Definition 4.0.2. We define the set S to be the linear space of smooth func-
tions satisfying

S =

{
f(~x)

∣∣∣∣ |f(~x)| < cn
|~x|n

, cn ∈ R, n ∈ N
}

Definition 4.0.3. We define the norm on S to be the function

||f − g|| =

√∫
|f − g|2 dnx

where f and g are arbitrary functions.

Definition 4.0.4. We define the distributions on S to be the linear func-
tionals on S. They map any function in S to a real number. We will usually
deal with the following type of distribution

Df [g] =

∫
f(x)g(x)dnx

Definition 4.0.5. We say that a distribution D[·] is continuous if for any
sequence of probe functions (gn)n∈N that is convergent with respect to the
norm on S, the sequence of real numbers

cn = D[gn]

is also convergent.

22
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Definition 4.0.6. The delta function δ(x − a) is defined in terms of the
linear functional Dδ(x−a) satisfying the following

Dδ(x−a) = g(a)

Proposition 4.0.7. Consider a distribution Df [g]. Then the derivative of
the distribution D∂if [g] equals −D[∂ig]. In the general case we define the
derivative of a distribution to be ∂iD[g] = −D[∂ig].

Proof. We have that

D∂if [g] =

∫
R
(∂if)g dx

= [fg]∞−∞ −
∫
R
f∂ig dx

= −
∫
R
f∂ig dx

= −Df [∂ig]

where we have integrated by parts and used the fact that f and g vanish
sufficiently fast enough at infinity.

Example 4.0.8. Let a ∈ R and consider the function

θa(x) =

{
1 if x ≥ a
0 if x < a

θa(x) is clearly not differentiable or even continuous. However, we can define
its derivative in terms of distributions.
The distribution corresponding to θa(x) is

Dθa [g] =

∫ ∞
−∞

θa(x)g(x) dx =

∫ ∞
a

g(x) dx (4.1)

According to the definition of the derivative of a distribution, we have that

D∂xθa [g] = −Dθa [∂xg]

inserting this into Equation (4.1), we get

D∂xθa [g] = −
∫ ∞
a

∂xg(x) dx

= −g(∞) + g(a) = g(a)

where we have used the fundamental theorem of calculus and the fact that the
probe function g(x) decays at infinity. We can now see that D∂xθa = Dδ(x−a).
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4.1 Green’s functions

Definition 4.1.1. Let D be some differential operator. Then we define the
Green function G(~x,~a) for D to be the one that satisfies the following

DG(~x,~a) = δ(~x− ~a)

Example 4.1.2. For the Laplace operator ∆, we have that

G(~x, ~y) = − 1

4π

1

|~x− ~y|
Theorem 4.1.3. Let D be a differential operator and G(~x,~a) its Green func-
tion. Consider two functions f and g. Then the solution to the inhomogeneous
equation Df = g is given by

f(~x) =

∫
Rn
G(~x,~a)g(~a) dna

Proof. We have that

Df(~x) =

∫
Rn
DG(~x,~a)g(~a) dna

=

∫
Rn
δ(~x− ~a)g(~a) dna

= g(~x)

Corollary 4.1.4. Consider the Laplace operator ∆. Then the solution for
∆f = g is given by

f = −
∫

g(x′)

4π|~x− ~x′|
d3x′

Proof. It suffices to show that the Green function for the Laplace operator
is − 1

4π|~x−~y| . The corollary then follows from the previous theorem.
The function has a singularity at the origin hence we can only define its
derivative in terms of distributions. Without loss of generality, we can set
~y = 0. We need to show that

∂i∂iD− 1
4π|~x|

[g(~x)] = D− 1
4π|~x|

[∂i∂ig(~x)]

= Dδ(~x)[g(~x)]

= g(~0)
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We have that

D− 1
4π|~x|

[∂i∂ig(~x)] =

∫
R3

(
− 1

4π|~x|

)
∂i∂ig(~x) d3x

We thus have to show that the integral is equal to g(~0). Since the integral is
divergent at the origin, we can split R3 into a sphere of radius ε denoted Vε
and the complement R3\Vε. We hence have that∫

R3

(
− 1

4π|~x|

)
∂i∂ig(~x) d3x =

∫
Vε

(
− 1

4π|~x|

)
∂i∂ig(~x) d3x︸ ︷︷ ︸

a

+

∫
R3\Vε

(
− 1

4π|~x|

)
∂i∂ig(~x) d3x︸ ︷︷ ︸

b

We show that a vanishes as ε → 0. Since ∂i∂ig(~x) is a continuous function,
we are, by the mean value theorem, guaranteed the existence of an ~x0 ∈ R3

such that

a = −∂i∂jg(~x)
∣∣
~x0

∫
Vε

1

4π|~x|
d3x

Setting ~c = −∂i∂jg(~x)
∣∣
~x0

we see that

lim
ε→0

a = lim
ε→0

(
~c

∫
Vε

1

4π|~x|
d3x

)
= −~c lim

ε→0

∫ ε

0

∫ 2π

0

∫ π
2

0

r2sin(φ)

4πr
dφdθdr

= −~c lim
ε→0

∫ ε

0

r

4π

∫ 2π

0

∫ π
2

0

sin(φ) dφdθdr

= −~c lim
ε→0

∫ ε

0

r

4π

∫ 2π

0

[
− cos(φ)

]π
2

0
dθdr

= −~c lim
ε→0

∫ ε

0

r

4π

∫ 2π

0

dθdr

= −~c lim
ε→0

∫ ε

0

r

2
dr

= −~c lim
ε→0

ε2

4
dr

= ~0
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Hence we only need to consider b. We first derive the integration by parts
analogue for volume integrals. By the divergence theorem, we have that∫

V

~∇ · ~B d3x =

∮
∂V

~B d
(
~∂V
)

Letting ~B = f~h, it follows that∫
V

~∇ ·
(
f~h
)
d3x =

∮
∂V

f~h d
(
~∂V
)

By the product rule we have∫
V

f
(
~∇ · ~h

)
d3x+

∫
V

~∇f · ~h d3x =

∮
∂V

f~h d
(
~∂V
)

(4.2)

We can therefore rearrange Equation (4.2) to obtain the desired integration
by parts rule.
Consider again b. By integration by parts, we have that

b =

∫
R3\Vε

(
− 1

4π|~x|

)
︸ ︷︷ ︸

f(~x)

∂i ∂ig(~x)︸ ︷︷ ︸
hi(~x)

= −
∫
R3\Vε

∂i

(
− 1

4π|~x|

)
∂ig(~x) d3x

+

∮
SR3\Vε

(
− 1

4π|~x|

)
∂ig(~x) dSi

Again applying integration by parts, we can see that

b = −
∫
R3\Vε

∂i

(
− 1

4π|~x|

)
︸ ︷︷ ︸

hi(~x)

∂i g(~x)︸︷︷︸
f(~x)

d3x+

∮
SR3\Vε

(
− 1

4π|~x|

)
∂ig(~x) dSi

=

∫
R3\Vε

∂i∂i

(
− 1

4π|~x|

)
g(~x) d3x+

∮
SR3\Vε

(
− 1

4π|~x|

)
∂ig(~x) dSi︸ ︷︷ ︸

c

−
∮
SR3\Vε

∂i

(
− 1

4π|~x|

)
g(~x) dSi︸ ︷︷ ︸

d
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To show that the first term is zero, we use the following identity:

∂i∂i
1

|~x|
= ∂i∂i

1

r

= ∂i

(
−xi
r3

)
= − 3

r3
+ 3

xixi
r5

= 0

We are thus left with two surface integrals c and d. Let us first consider d.
Since this is a surface integral over a sphere of radius ε, we can replace all
occurences of r = |~x| with ε. Using ∂i

(
− 1

4π~x

)
= 1

4π
xi
r3

we see that

d =

∮
SR3\Vε

xi
4πε3

g(~x) dSi

Since we must choose the direction of the normal vector to point inside of
the sphere, we take d~S = ~ndS = −~x

r
dS. This allows us to replace dSi by

−xi
r

= −xi
ε

:

d = −
∮
SR3\Vε

xi
4πε3

g(~x)
xi
ε
dS

= −
∮
SR3\Vε

xixi
4πε4

g(~x) dS

= −
∮
SR3\Vε

r2

4πε4
g(~x) dS

= − 1

4πε2

∮
SR3\Vε

g(~x) dS

By the mean value theorem, we are guaranteed the existence of an ~x0 ∈ R3
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such that

d = − 1

4πε2

∮
SR3\Vε

g(~x) dS

= −g(~x0)

4πε2

∮
SR3\Vε

dS

Now, the surface area of the sphere is 4πε2, hence we have that

d = −g(~x0)

4πε2

∮
SR3\Vε

dS

= −g(x0)

In the limit limε→0, ~x0 → ~0. Hence d = −g(~0). We only need to show that c
vanishes. Indeed, replacing r with ε and using the mean value theorem, we
have that

lim
ε→0

c = lim
ε→0

∮
SR3\Vε

(
− 1

4π|~x|

)
∂ig(~x) dSi

= lim
ε→0

∮
SR3\Vε

(
− 1

4πε

)
∂ig(~x)ni dS

= lim
ε→0

(
−1

4πε

)
∂ig(x)

∣∣
~x0
ni

∮
SR3\Vε

dS

= lim
ε→0
−ε∂ig(x)

∣∣
~x0
ni

= 0

4.2 General Solution to the Poisson equation

In the previous section, we derived the following solution to the Poisson
equation ∆f = g:

f(~x) = − 1

4π

∫
g(~y)

|~x− ~y|
d3x
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Lemma 4.2.1. Let g(~x) = 0. Then the only decaying at infinity solution to
the Poisson equation is f(~x) = 0.

Proof. Assume that there exists a non-zero decaying at infinity function H(~x)
such that ∆H(~x) = 0. Then the integral

∫
∂iH∂iH must be strictly positive.

By integration by parts, we have that

0 <

∫
R3

∂iH∂iH d3x = −
∫
R3

H∂i∂i d
3x = −

∫
R3

H∂i∂iH

= −
∫
R3

H∆H

= 0

We therefore obtain a contradiction and we must have that H(~x) = 0.

Theorem 4.2.2. The solution of the Poisson equation is unique in the class
of decaying at infinity functions.

Proof. Assume that the solution is not uniquely. Then there exist distinct
functions f and f ′ such that ∆f = g and ∆f ′ = g. Due to linearity of the
Laplace operator, we have that ∆(f − f ′) = ∆f − δf ′ = g − g = 0. By the
above lemma, we have that f − f ′ = 0 =⇒ f = f ′ which is a contradiction.
Hence the solution is unique.

Remark. There are some non-trivial solutions to the Poisson equation that
grow at infinity. For example, f(~x) = a+ bixi.



Chapter 5

Static fields

We now consider the case where ρ and ~j are time-independent or static. The
charges can move around the space but ρ and ~v are constant at each point.
We therefore have that ∂t ~E = 0 and ∂t ~B = 0. This simplifies the Maxwell
equations into the following forms:

~∇× ~E = 0

~∇ · ~E =
ρ

ε0

~∇× ~B = µ0
~j

~∇ · ~B = 0

where µ0 = 1
c2ε0

is the vacuum permeability of free space constant. The
relations to the vector and scalar potentials are also much simpler:

−∆ ~A = µ0
~j

−∆φ =
ρ

ε0

~∇ · ~A = 0

The first two of these equations are Poisson equations and have solutions

φ =
1

4πε0

∫
R3

ρ(~y)

|~x− ~y|
d3y

~A =
µ0

4π

∫
R3

~j(~y)

|~x− ~y|
d3y

30



CHAPTER 5. STATIC FIELDS 31

which give the following expressions for the electric and magnetic fields:

~E =
1

4πε0

∫
R3

ρ(~y)(~x− ~y)

|~x− ~y|3
d3y

~B =
µ0

4π

∫
R3

~j(~y)× (~x− ~y)

|~x− ~y|3
d3y

5.1 Point-like charge

Example 5.1.1. Consider a point-like charge situated at ~x1 with charge den-
sity given by ρ(~x) = qδ(~x − ~x1). We can calculate the electric potential as
follows:

φ =
1

4πε0

∫
R3

δ(~y − ~x1)
q

|~x− ~y|
d3y

=
1

4πε0

q

|~x− ~x1|

The electric field is then given by

~E = −~∇φ

= − 1

4πε0

~∇ q

|~x− ~x1|

=
q

4πε0

~x− ~x1

|~x− ~x1|3

5.2 Superposition Principle

Theorem 5.2.1. (Superposition Principle)
The electric and magnetic fields created by a combination of charges and
currents is equal to the sum of the fields created by each of the charges indi-
vidually.

Proof. This follows from linearity of the Laplace operator.
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5.3 Electric Field of a Charged Infinite Straight

Line

Example 5.3.1. Consider a charged infinite straight line. We can charac-
terise the charge density of a section of length h by a linear density λ such
that q = λh. Dividing each cut into small sections of length dz, we can treat
each length as point-like charges. If we take the limit of dz → 0, we arrive
at the following integral:

φ =

∫ H2

−H1

1

4πε0

λdz√
x2 + y2 + z2

where we consider a finite line going from −H1 to H2 along the z axis. Solving
the integral, we get

φ =
λ

4πε0

log


√

1 +
H2

2

l2
+ H2

l√
1 +

H2
1

l2
− H1

l


where l =

√
x2 + y2. Now it follows that

φ =
λ

4πε0

log


√

1 +
H2

2

l2
+ H2

l√
1 +

H2
1

l2
− H1

l

×

√
1 +

H2
1

l2
+ H1

l√
1 +

H2
1

l2
+ H1

l



=
λ

4πε0

log


(√

1 +
H2

2

l2
+ H2

l

)(√
1 +

H2
1

l2
+ H1

l

)
1 +

H2
1

l2
− H2

1

l2


=

λ

4πε0

log

[(√
1 +

H2
2

l2
+
H2

l

)(√
1 +

H2
1

l2
+
H1

l

)]
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Since H1 and H2 are very large, we can approximate the square roots by
removing the ones:

φ =
λ

4πε0

log

[(√
H2

2

l2
+
H2

l

)(√
H2

1

l2
+
H1

l

)]

φ =
λ

4πε0

log

[(
2H2

l

)(
2H1

l

)]
φ =

λ

4πε0

log
4H2H1

l2

φ = − λ

4πε0

log(x2 + y2) + c

for some constant c. Therefore, the electric field is

~E = −~∇φ

=
λ

2πε0

1

x2 + y2

 x
y
0


5.4 Integral form of Maxwell’s Equations

For the two Maxwell’s Equations ~∇ · ~E = ρ
ε0

and ~∇ · ~B = 0, we can integrate
over a volume V and apply the divergence theorem:∫

V

~∇ · ~E d3x =

∮
SV

~E · d~S =

∫
V

ρ

ε0

d3x =
QV

ε0∫
V

~∇ · ~B d3x =

∮
SV

~B · d~S =

∫
V

0 d3x = 0

For the two Maxwell’s Equations ~∇× ~E = −∂t ~B and ~∇× ~B = 1
c2
∂t ~E+ 1

c2ε0
~j,

we can integrate over a surface S and apply Stoke’s theorem:∫
S

~∇× ~E · d~S =

∮
∂S

~E · d~x =

∫
S

−∂t ~B · d~S∫
S

~∇× ~B · d~S =

∮
∂S

~B · d~x =

∫
S

1

c2
∂t ~E +

1

c2ε0

~j · d~S

With regards to magnetostatics, the last equation is useful when we drop the
∂t ~E term. It is known as Ampere’s circuital law.
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5.5 Magnetic field of a long wire

We first note that the flux of the magnetic field is 0 for any closed surface.
This follows from the integral form of Maxwell’s equations. If we take a
cylinder surrounding a section of the wire, we see that ~B should be tangent
to the cylinder. We now use Ampere’s circuital law to compute the length
of the magnetic field, using a circle of radius r as the integration contour γ.
Ampere’s law states that∮

∂S

~B · d~x =

∫
S

1

c2ε0

~j · d~S

Now since the magnetic field is parallel to the direction of the contour γ, we
have that ∮

γ

~B · d~x =

∮
γ

| ~B||d~x|cos(0)

= | ~B|
∮
γ

dx

= | ~B| × 2πr

Now since ~j = ~ezIδ(x)δ(y) for some constant I, we see that

∫
S

1

c2ε0

~j · d~S = µ0I

∫
S

~ezδ(x)δ(y) ·

 0
0
1

 dxdy

= µ0I

∫
S

δ(x)δ(y) dxdy

= µ0I

=⇒ B(r) =
µ0I

2πr

We could also use the general solution for ~A to solve the problem. Again
using ~j = ~ezIδ(x)δ(y), we have that

~A =
µ0

4π

∫
R3

~j(~x′)

|~r − ~r′|
d3x′

=
~ezIµ0

4π

∫
δ(x′)δ(y′)dx′dy′dz′√

(x− x′)2 + (y − y′)2 + (z − z′)2
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=
~ezIµ0

4π

∫
1√

x2 + y2 + (z − z′)2
dz′

=
~ezIµ0

4π
log(x2 + y2) + c

This implies that the magnetic field is

~B =
~ezIµ0

2πr

 −yx
0


5.6 Dipole Field, Multipole Expansion

Definition 5.6.1. Consider a system of charges consisting of two positive
and negative charges with an overall charge of zero. This system is referred
to as a dipole.

Remark. Even though the overall charge is vanishing, an electric field is still
created. Such an electric field results in interaction between dipoles close to
each other.

Lemma 5.6.2. Consider the function f(~x − ~x′) = 1
|~x−~x′| . Then its Taylor

expansion is given by

1

|~x− ~x′|
=

1

|~x|
+
~x · ~y
|~x|3

+
3(~x · ~y)2 − |~x|2|~y|2

2|~x|5
+ . . .

Proof. In general, the Taylor series for a function of the form f(~x + ~a) is
given by

f(~x+ ~a) = f(~x) + ∂if(~x)ai +
1

2
∂i∂jf(~x)aiaj + . . .

Now, we have that

f(~x) =
1

|~x− ~x′|
δif(~x) = − xi

|~x|3

δiδj = − δij
|~x|3

+ 3
xixj
|~x|5

Inserting this into the general formula for the Taylor series, we arrive at the
desired result.
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Proposition 5.6.3. Consider two point like charges with zero total charge
seperated by a small amount ~d centered at the origin. Then the potential for
this system is given by

φ =
q~x · ~d

4πε0|~x|3

Proof. The potential for this system is given by the sum of the potentials of
the two charges:

φ =
q

4πε0

∣∣∣~x− ~d
2

∣∣∣ − q

4πε0

∣∣∣~x− ~d
2

∣∣∣
=

q

4πε0

 1∣∣∣~x− ~d
2

∣∣∣ − 1∣∣∣~x− ~d
2

∣∣∣


=
q

4πε0

(
f(~x) +

∂if(~x)~d

2
− f(~x) +

∂if(~x)~d

2
+ . . .

)

=
q

4πε0

(
− ~x~d

2|~x|3
− ~x~d

2|~x|3
+ . . .

)

In the limit ~d→ ~0 we get a very good approximation and

φ =
q~x~d

4πε0|~x|3

Remark. The electric field is given by

~Ei = −∂iφ

= ∂i

(
qxjdj
4πε0r3

)
=

qδijdj
4πε0r3

− 3
qxixjdj
4πε0r5

=
qr2di − 3xi(~j · ~d)

4πε0r5
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Definition 5.6.4. Let q be the magnitude of the charges of two point-like
charges in a dipole system and ~d the distance between them. Then we define
the dipole moment to be the quantity ~p = q~d.

Remark. With the dipole moment, we can reformulate the definition of the
electric field as

~E =
r2~p− 3~x(~x · ~p)

4πε0r5

Proposition 5.6.5. Consider a general distribution of charges contained
in some finite volume V. Then the potential can be approximated at large
distances by a sum of a monopole potential, dipole pential and some higher
order multipole potentials:

φ(~x) =
1

4πε0

[
Q

r
+
~e~p

r2
+

1

2r3
eiejQij + . . .

]
where ~e = ~x

r
and Q =

∫
V
ρ(~y) d3y is the monopole moment, ~p =

∫
V
~yρ(~y) d3y

is the dipole moment and Qij =
∫
V

(3yiyj−|~y|2δij)ρ(~y) d3y is a higher order
multipole moment.

Proof. We start off with the general solution of the potential of an electro-
static system

φ(~x) =
1

4πε0

∫
V

ρ(~y)

|~x− ~y|
d3y

Using the lemma for the Taylor expansion, we have that

φ(~x) =
1

4πε0

∫
V

ρ(~y)

(
1

|~x|
+
~x · ~y
|~x|3

+
3(~x · ~y)2 − |~x|2|~y|2

2|~x|5
+ . . .

)
d3y

=
1

4πε0

[∫
V

ρ(~y)

r
d3y + ~x ·

∫
V

ρ(y)~y

r3
d3y + xixj

∫
V

(3yiyj − δij|~y|2)ρ(y)

2r5
d3y + . . .

]
=

1

4πε0

[∫
V

ρ(~y)

r
d3y + ~e ·

∫
V

ρ(y)~y

r2
d3y +

eiej
2

∫
V

(3yiyj − δij|~y|2)ρ(y)

2r3
d3y + . . .

]
=

1

4πε0

[
Q

r
+
~e · ~p
r2

+
eiej
2r3

Qij + . . .

]
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5.7 Magnetic dipole moments, distant field of

a current distribution

Lemma 5.7.1. Let F (~y) be a function and V a volume in space. Then∫
V

ji(~y)∂iF (~y) d3y = 0

Proof. We first note that the continuity equation states that

~∇~j = −∂tρ

Since we are working with magnetostatics, ρ is time independent and we
have that ~∇~j = 0. Hence ∂ijiF (~y) for any function F (~y). Now consider the
integral over the volume V

0 =

∫
V

∂iji(~y)F (~y) d3y = −
∫
V

ji(~y)∂iF (~y) d3y +

∮
SV

ji(~y)F (~y) dSi

Since ρ = 0 outside the volume V, we must also have that ~j = ~0 outside the
volume V. This should also be true right on the boundary VS and hence the
surface integral is zero.

Proposition 5.7.2. Given a system of currents in a volume V, the vector
potential ~A for the magnetic field ~B can be well approximated by the dipole
moment

~A =
µ0

4π

~m× ~x
r3

Proof. We begin with the general solution for the vector potential

~A =
µ0

4π

∫
V

~j(~y)

|~x− ~y|
d3y

We can then apply the lemma for the Taylor expansion of 1
|~x−~y| to obtain

~A =
µ0

4π

∫
V

~j

(
1

|~x|
+
yixi
|~x|3

+ . . .

)
d3y

=
µ0

4π

[
1

|~x|

∫
V

~j(~y) d3y +
xi
|~x|3

∫
V

yi~j(~y) d3y

]
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where we have only considered the first two terms of the expansion. Now
consider the function F (~y) = y1. By the previous lemma, we have that∫

V

∂iy1ji(~y) d3y =

∫
V

δi1ji(~y) d3y =

∫
V

j1(~y) d3y = 0

we can repeat the same process with F = y2 and F = y3 to see tat the integral
of any component of the current density is vanishing. Hence the leading term
of the Taylor expansion vanishes. We can further simplify the second term
by considering the previous lemma with the function F (~y) = yayb. We have
that ∫

V

ji(~y)∂iF (~y) d3y =

∫
V

ji(~y)∂i(yayb) d
3y

=

∫
V

ji(~y)(δiayb + yaδib) d
3y

=

∫
V

ja(~y)yb + jb(~y)ya d
3y

= 0

=⇒
∫
V

ja(~y)yb d
3y = −

∫
V

jb(~y)ya d
3y

Hence in the 3 × 3 matrix Mab =
∫
V
ybja(~y) d3y there are only 3 nontrivial

elements since the matrix is antisymmetric. They are

m1 = −M23, m2 = −M31, m3 = −M12

It is therefore easy to see that

ma = −1

2
εabcMbc

= −1

2
εabc

∫
V

jb(~y)yc d
3y

=⇒ ~m =
1

2

∫
V

~y ×~j(~y) d3y

We therefore have that

~A =
µ0

4π

~m× ~x
r3
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Remark. The corresponding magnetic field for the magnetic potential de-
rived in the previous proposition is thus

~B = −µ0

4π

(
~m

r3
− 3

~x(~x · ~m)

r5

)
Example 5.7.3. Consider a loop of current. Such a current is obviously
localised on a contour γ. We can define the current distribution as a line
integral

~j = I

∮
γ

δ(~x− ~γ(s)) d~x

where I is some constant. We can now calculate the magnetic dipole moment
of the current loop:

mi =
1

2

∫
V

y ×~j(~y) d3y

=
εiab
2

∫
V

yajb(~y) d3y

=
Iεiab

2

∫
V

ya

∮
γ

δ(~y − ~γ(s)) dyb d
3y

=
Iεiab

2

∮
γ

∫
V

yaδ(~y − ~γ(s)) d3y dyb

=
Iεiab

2

∮
γ

∫
V

yaδ(~y − ~γ(s)) d3y dyb

=
Iεiab

2

∮
γ

γa dyb

For flat contours, this integral gives |~m| = ISγ where Sγ is the area sur-
rounded by γ. This is the analogue to the electric dipol moment formula for
two point-like charges |~p| = qd where d is the distance between the charges.

5.8 Forces and moments acting on distribu-

tions of charges

Consider a system consisting of charges in an external field generated by a
continuous charge distribution ρ and current distribution ~j. Then the force
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acting on a small element of this system is the Lorentz force given by

d~F (x) = (d3xρ) ~E + (d3x~j)× ~B

Definition 5.8.1. Let ~x be a point in space and F (~x) the force acting at

~x. Then we define the torque or rotating moment of F (~x) to be ~N =

~x× ~F (~x).

Continuing with the previous discussion, we have that the torque is

d ~N(~x) = ~x× d~F (~x)

Proposition 5.8.2. Consider a system of charges. Then the force acting on
the charges due to their own field vanishes.

Proof. For simplicity’s sake, we shall only consider the force generated by
the electric field. By the previous discussion, we have that

d~F (~x) = (d3xρ) ~E

Dividing both sides by d3x we have that

d~F (~x)

d3x
= ρ ~E

Now integrating both sides with respect to d3x over a volume V we get

~F (~x) =

∫
V

ρ ~E d3x

=
1

4πε0

∫
V

ρ(~x)

(∫
V

ρ(~y)(~x− ~y)

|~x− ~y|3
d3y

)
d3x

=
1

4πε0

∫
V

(∫
V

ρ(~x)ρ(~y)(~x− ~y)

|~x− ~y|3
d3y

)
d3x

We can see that if we switch the integration variables ~x and ~y we arrive at

1

4πε0

∫
V

(∫
V

ρ(~x)ρ(~y)(~x− ~y)

|~x− ~y|3
d3y

)
d3x = − 1

4πε0

∫
V

(∫
V

ρ(~x)ρ(~y)(~x− ~y)

|~x− ~y|3
d3y

)
d3x

Hence the integral must be zero and thus the force ~F (~x) must be zero.
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Proposition 5.8.3. Consider a system of charges with charge density ρ and
current density ~j in an external electric field ~E and magnetic field ~B. We
have that the electrostatic force acting on the system can be approximated by

~F = Q~E(0) +
(
~∇
[
~p · ~E(~x)

])
~x=0

where ~p is the electric dipole moment. Furthermore, the magnetostatic force
acting on the system can be approximated by

~F =
(
~∇
[
~m · ~B(~x)

])
~x=0

where ~m is the magnetic dipole moment.

Proof. We first Taylor expand the electric field around the origin:

~E(~x) = ~E(0) + xi

(
∂ ~E(~x)

∂xi

)
~x=0

+ . . .

For a good approximation, we will use only the first two terms of this expan-
sion. Inserting this into the Lorentz force for the electrostatic case, we have
that

~F =

∫
V

ρ(~x) ~E(~x) d3x

= ~E(0)

∫
V

ρ(~x) d3x+

(
∂ ~E(~x)

∂xi

)
~x=0

∫
V

xiρ(~x) d3x

= QV
~E(0) + pi

(
∂ ~E(~x)

∂xi

)
~x=0

(5.1)

Now recall Maxwell’s first equation. It says that

~∇× ~E = −∂t ~B

But we are working with electrostatics and magnetostatics and thus the fields
are time independent, hence ~∇× ~E vanishes. Now consider the vector triple
product identity derived in the first section:

~a× (~b× ~c) = ~b(~a · ~c)− ~c(~a ·~b)
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We have that

~p× (~∇× ~E) = ~∇(~p · ~E)− ~E(~p · ~∇)

=⇒ ~p× (~0) = ~∇(~p · ~E)− ~E(~p · ~∇)

=⇒ 0 = ~∇(~p · ~E)− ~E(~p · ~∇)

=⇒ ~∇(~p · ~E) = ~E(~p · ~∇) (5.2)

The right hand side of Equation (5.2) is exactly the right hand side of Equa-
tion (5.1). It therefore follows that the force is

~F = QV
~E(0) + (∇ [piEi(~x)])~x=0

= QV
~E(0) +

(
∇
[
~p · ~E(~x)

])
~x=0

as required.
For the magnetostatic case, we Taylor expand the magnetic field around the
origin:

~B(~x) = ~B(0) + xi

(
∂ ~B(~x)

∂xi

)
~x=0

+ . . .

Inserting this into the Lorentz force for the magnetostatic case, we have that

Fi =

[∫
V

~j(~x)× ~B(~x) d3x

]
i

=

[∫
V

~j(~x)× ~B(0) d3x+

∫
V

~j(~x)×

(
xj

(
∂ ~B(~x)

∂xj

)
~x=0

)
d3x

]
i

=

[∫
V

~j(~x)× ~B(0) d3x+

∫
V

~j(~x)× xj
(
∂j ~B(~x)

)
~x=0

d3x

]
i

=

∫
V

εiabja(~x)Bb(0) d3x+

∫
V

εiabja (xj∂jBb(0)) d3x

=

∫
V

εiabja(~x)Bb(0) d3x+ ∂jBb(0)

∫
V

εiabjaxj d
3x
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Now from previous results, we know the following∫
V

jk(~x) d3x = 0∫
V

xajk d
3x = εakbmb

where ~m is the magnetic dipole moment. We see that the first term of the
expansion of Fi is vanishing and we are left with the following

Fi = εiabεjazmz∂jBb(0)

= εabiεazjmz∂jBb(0)

= mz∂jBb(0)(δbzδij − δbjδiz)
= mb∂iBb(0)−mi∂bBb(0)

But ~∇ · ~B = 0 and hence the second term vanishes. We are thus left with

Fi = mb∂iBb(0)

~F =
(
~∇
[
~m · ~B

])
~x=0

as required.

Proposition 5.8.4. Consider a system of charges with charge density ρ and
current density ~j in an external electric field ~E and magnetic field ~B. We
have that the electrostatic torque acting on the system can be approximated
by

~N = ~p× ~E(0)

where ~p is the electric dipole moment. Furthermore, the magnetostatic torque
acting on the system can be approximated by

~N = ~m× ~B(0)

where ~m is the magnetic dipole moment.

Proof. We again consider the Taylor expansion of the electric field around
the origin:

~E(~x) = ~E(0) + xi

(
∂ ~E(~x)

∂xi

)
~x=0

+ . . .
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For simplicity’s sake, we shall only consider the first term of the expanion.
Inserting this into the definition of the torque, we see that

Ni =

[∫
V

~x× (ρ(~x) ~E(0))

]
i

=

∫
V

ρ(~x)εiabxaEb(0) d3x

= εiabEb(0)

∫
V

ρ(~x)xa d
3x

= εiabEb(0)pa

= [p× ~E(0)]i

as required.
Now we again consider the Taylor expansion of the magnetic field around the
origin:

~B(~x) = ~B(0) + xi

(
∂ ~B(~x)

∂xi

)
~x=0

+ . . .

Once more, we shall only consider the first term of the expansion. Inserting
it into the definition of torque we obtain

Ni =

[∫
V

~x×
(
~j × ~B(0)

)
d3x

]
i

=

∫
V

εiabxaεbxyjxBy(0) d3x

= εiabεbxyBy(0)

∫
V

xajx d
3x

= εiabεbxyBy(0)εaxzmz

= εiabBy(0)εxybεxzamz

= εiabBy(0)(δyzδba − δyaδbz)mz

= εibaBz(0)mz − εiyzBy(0)mz

Consider εibaBz(0)mz. We can rename a→ b and b→ a to get that

εibaBz(0)mz = εiabBz(0)mz

= −εiabBz(0)mz

= 0
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We are thus left with

Ni = −εiyzBy(0)mz

~N = − ~B × ~m

= ~m× ~B

as required.

5.9 Energy of a system in an external field

Consider a system of charges and currents in a volume V under the influence
of some fixed external field. As seen in the previous section, there is a force
acting on this system. In order to mechanically move the system, we need
to apply a force ~F = −~Fext. If we move the system along a very small
translation vector ~a ∈ R3 then the work done is given by

W = ~F · ~a = −~Fext · ~a

Proposition 5.9.1. Consider a system of charges and currents in a volume
V under the influence of some fixed external field. Then the potential energy
due to electrostatic forces is given by

U =

∫
V

ρ(~x)φ(~x) d3x

Proof. We start from the definition of work done on the system for a small
translation ~x→ ~x+ ~a:

W = −~Fext · ~a

Inserting the electrostatic Lorentz force into the above equation, it follows
that

W = −
∫
V

ρ(~x) ~E(~x) d3x · ~a

=

∫
V

ρ(~x)~∇φ(~x) d3x · ~a
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Using the integration by parts formula for integrals, we have that∫
V

ρ(~x)~∇φ(~x) d3x = −
∫
V

~∇ρ(~x)φ(~x) d3x+

∮
SV

ρ(~x)φ(~x) · d~S

By assumption, ρ(~x) is vanishing outside of V and therefore must also be
vanishing on the boundary of SV . Thefore the surface integral vanishes and
it follows that

W = −
∫
V

~∇ρ(~x)φ(~x) d3x · ~a

We can now use the Taylor expansion ρ(~x − ~a) = ρ(~x) − ai∂iρ(~x), valid for
small |~a| to get

W =

∫
V

(ρ(~x− ~a)− ρ(~x))φ(~x) d3x

=

∫
V

ρ(~x− ~a) d3x−
∫
V

ρ(~x)φ(~x) d3x

Obviously the work done can be expressed as a difference of potential energies
W = Uafter − Ubefore where

U =

∫
V

ρ(~x)φ(~x) d3x

Remark. When the system is small, we can Taylor expand φ(~x) around the
origin to get a good first-order approximation:

U =

∫
V

ρ(~x)φ(0) + xi∂iφ(0))d3x

= Qφ(0) + ∂iφ(0)

∫
V

xiρ(~x) d3x

= Qφ(0) + ~∇~pφ(0)

= φ(0)
(
Q+ ~∇~p

)
Proposition 5.9.2. Consider a system of charges and currents in a volume
V under the influence of some fixed external field. Then the potential energy
due to magnetostatic forces is given by

U =

∫
V

~j · ~A d3x
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Proof. We start with the definition of work done in moving the system by a
small translation ~x→ ~x+ ~a:

W = −~Fext · ~a

= −
∫
V

~j(~x)× ~B(~x) d3x · ~a

= −aiεiab
∫
V

ja(~x)Bb(~x) d3x

= −aiεiab
∫
V

ja(~x)
[
~∇× ~A(~x)

]
b
d3x

= −aiεiab
∫
V

ja(~x)εbxy∂xAy(~x) d3x

= −aiεbiaεbxy
∫
V

ja(~x)∂xAy(~x) d3x

= −ai(δixδay − δiyδax)
∫
V

ja(~x)∂xAy(~x) d3x

= −ax
∫
V

jy∂xAy(~x) d3x+ ay

∫
V

jx(~x)∂xAy(~x) d3x

We now note that the continuity equation ~∇~j = −∂tρ implies that ~∇~j is
vanishing in the time independent magentostatic case. Hence the second
term in the above vanishes. We also consider the Taylor expansion for small
|~a|, ji(~x− ~a) = ji(~x)− ak∂kji(~x) which allows us to write the first term as

W = −
∫
V

−ax∂xjyAy(~x) d3x

=

∫
V

(jy(~x)− jy(~x− ~a))Ay(~x) d3x

= −
∫
V

(jy(~x− ~a)− jy(~x))Ay(~x) d3x

Obviously the work done can be expressed as a difference of potential energies
W = Uafter − Ubefore where

U = −
∫
V

~j · ~A d3x
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We now need to take into consideration what happens to the currents after
such a translation. We first consider a wire modelled by a contour γ with
current I for the current distribution ~j. The volume integral for the potential
energy hence reduces to a contour integral over the wire:

U = −I
∮
γ

~Ad~l

= −I
∫
~∇× ~A · d~S

= −I
∫

~B · d~S

= −IΦ

where S is some surface bounded by γ and Φ is the flux through the surface.
When the contour moves through the magnetic field, the Lorentz force acts
on the electrons inside the wire which can change the current. This effect is
given by Faraday’s Law of Induction:

E = −dΦ

dt

where E is the electromotive force. In order to fix the current, we need to
add some external electromotive force of

Eext =
dΦ

dt

We hence need to factor in the work done by this force which is Eextdq where
dq is the charge going through a small section of the wire

dW =
dΦ

dt
dq

=
dq

dt
dΦ

= IdΦ

= −dU

Hence the total potential energy of the system is −U =
∫
V
~j · ~A d3x.
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5.10 Self-energy of a system

We now introduce the notion of the energy of a system in its own field.

Definition 5.10.1. Consider a system of charges and currents in a volume
V. We can decompose V into small sections of charges and currents. We
define the self-energy of the system to be the sum of the individual energies
of the interactions between all these small sections when their size tends to
0.

Proposition 5.10.2. Consider a system of charges in a volume V. Then the
self-energy of the system in the electrostatic case is

U self =
ε0

2

∫
~E · ~E d3x

Proof. Consider a localised system of charges with a fixed charge density
ρ(~x) in a volume V. We can divide this system into tiny elements which we
label either i or k. Each of these small elements can be described by its own
density ρi(~x) and hence the total density is the sum

ρ(~x) =
∑
i

ρi(~x)

Now denote the potential energy of the element i created in the external field
generated by an element k by Uik. Let Vi represent the small volume that i
occupies. From the previous section, we have that

Uik =

∫
Vi

ρi(~x)φk(~x)

=

∫
Vi

∫
Vk

ρi(~x)ρk(~y)

4πε0|~x− ~y|
d3y d3x

We can see that Uik = Uki. Now from the definition of self-energy, we have
that

U self = lim
size→0

∑
i<k

Uik (5.3)

We require i < k to avoid double counting elements. We note that∑
i,k

Uik = 2
∑
i<k

Uik +
∑
i

Uii
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Therefore we can rewrite Equation (5.3) as follows:

U self =
1

2
lim

size→0

(∑
i,k

Uik −
∑
i

Uii

)

The first sum can be written as∑
i,k

Uik =
∑
i,k

∫
Vi

∫
Vk

ρi(~x)ρk(~y)

4πε0|~x− ~y|
d3y d3x

=

∫
Vi

∫
Vk

∑
i(ρi(~x))

∑
k(ρk(~y))

4πε0|~x− ~y|
d3y d3x

=

∫
V

∫
V

ρ(~x)ρ(~y)

4πε0|~x− ~y|
d3y d3x

This quantity does not depend on the way the system is divided and therefore
the limit can be dropped. Now the second term is∑

i

Uii =
∑
i

∫
Vi

∫
Vi

ρi(~x)ρi(~y)

4πε0|~x− ~y|
d3y d3x

We claim that this integral is actually vanishing in the limit size → 0. To
see this, assume that Vi are tiny cubes of sides a. We can and will assume
that the charge density ρ(~x) < C for some constant C. Now since each Vi
are small, we can assume that there exists an ~xi such that ρi(~x) = ρ(~xi). It
follows that the integral, in the limit, is:∫

Vi

∫
Vi

ρi(~x)ρi(~y)

4πε0|~x− ~y|
d3y d3x ' ρ(~xi)

2

4πε0

∫
Vi

∫
Vi

1

|~x− ~y|
d3y d3x

' ρ(~xi)
2

4πε0

a5

where the a5 term was introduced by estimating the integral. Each integral∫
Vi
d3x contributes a3 as it is the volume of the cube Vi. The 1

|~x−~y| has

maximal value 1
a
. Indeed if ~x − ~y = (a, 0, 0). Then 1

|~x−~y = 1
a
|. We hence

obtain a term a5. We now have to sum up each integral which is the same
as multiplying by the number of cubes. The number of cubes is given by V

a3
.
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Hence

lim
a→0

∑
i

Uii = lim
a→0

ρ(~xi)
2V a2

4πε0

< lim
a→0

C2V a2

4πε0

= 0

Thus this term vanishes and we are left with

U self =
1

2

∫
V

∫
V

ρ(~x)ρ(~y)

|~x− ~y|
d3yd3x

=
1

2

∫
V

ρ(~x)φ(~x) d3y d3x

Now using the formulation for scalar potential −∆φ(~x) = ρ
ε0

we have

U self = −ε0

2

∫
V

φ(~x)∂i∂iφ(~x) d3x

=
ε0

2

∫
V

∂iφ(~x)∂iφ(~x) d3x

=
ε0

2

∫
V

~E · ~E d3x

where we integrated by parts and dropped the vanishing surface integral as
usual.

Proposition 5.10.3. Consider a system of currents in a volume V. Then
the self-energy of the system in the magnetostatic case is

U self =
1

2µ0

∫
~B · ~B d3x

Proof. The proof is left as an exercise to the reader. It follows the same
argumentation as the previous proof.

Remark. If we have a system of both charges and currents, we have the
following general formula for the self-energy:

U self =
ε0

2

∫
V

[
~E · ~E + c2 ~B · ~B

]



Chapter 6

Time-dependent fields

If ~E or ~B are time dependent, we can no longer decouple electric and magnetic
phenomena like we have been doing previously. This is evident from the two
Maxwell equations

~∇× ~E = −∂t ~B

~∇× ~B =
1

c2
∂t ~E + µ0

~j

Obviously, ~E and ~B depend on each other. Another consequence of this
is that electromagnetic waves can easily propgate through space even when
ρ(~x) = 0 and ~j(~x) = 0 (such as in vacuum).

6.1 Electromagnetic waves

Definition 6.1.1. We define � to be the linear wave operator:

� =
1

c2

∂2

∂t2
−∆

Given a function f(~x, t), the differential equation

�f = 0

is called the wave equation.

53
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Remark. Given a scalar potential φ and vector potential ~A satisfying the
Lorentz condition we can reformulate Maxwell’s equations as follows:

� ~E =
ρ(~x)

ε0

(6.1)

� ~B = µ0
~j(~x) (6.2)

Proposition 6.1.2. Consider a system with ρ(~x) = 0 and ~j(~x). Then ~E

and ~B satisfy the wave equation.

Proof. This follows from the previous remark.

6.2 One-dimension wave equation

The one-dimensional wave equation refers to one spatial dimension. For a
function ψ(x, t), the one-dimensional wave equation is(

1

c2

∂2

∂t2
− ∂2

∂x2

)
ψ(~x, t) = 0 (6.3)

where c is a positive velocity. This equation has two special solutions, namely

ψ
(k)
± (x, t) := sin(kx± ωt)

By plugging ψ± into Equation (6.3), we see that they are solutions if and only

if ω = ck. ψ
(k)
− represents a sine wave moving in the positive x direction with

velocity c. The solution ψ
(k)
+ represents a sine wave moving in the negative x

direction with velocity −c. We define the wave length λ to be the distance
of two wave crests in the graph ψ

(k)
± (x, t0) at a fixed time t0: λ = 2π

k
. The

quantity k is referred to as the wave number and ω is the frequency.
Since the wave operator is a linear operator, the principle of superposition of
applies to the wave equation and linear combinations of solutions are again
solutions. Consider the following

ψ̃
(k)
± (x, t) := cos(kx± ωt)

with the same relation between k and ω as before. It follows that the complex
superpositions

Ψ
(k)
± (x, t) := ψ̃

(k)
± (x, t) + iψ

(k)
± (x, t)

= ei(kx±ωt)
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are again solutions. Such solutions are called monochromatic waves as
they only consist of one frequency ω. Any square integrable solution φ(x, t)
to the wave equation can be written as the superposition of monochromatic
waves:

1

2π

∫ ∞
−∞

(
ψ̂+(k)ei(kx+ω(k)t) + ψ̂

i(kx−ω(k)9t)
−

)
dk

Each ω(k) is determined by k and speed c. The functions ψ̂±(k) are the

Fourier transforms of ψ±(x, t) and they determine how strongly Ψ
(k)
± con-

tribue to ψ±(x, t). The solution ψ(x, t) is unique once we pose initial condi-
tions on the system:

ψ(x, t = 0) = h(x)

∂

∂t
ψ(x, t = 0) = g(x)

6.3 Three-dimensional wave equation

We can extend the solutions found in the previous section for the three-
dimensional wave operator � = 1

c2
∂2

∂2t
−∆.

Let f : R→ C be a twice differentiable function and ~k ∈ R3. Denote k := |~k|.
Then

ψ
(~k)
f (~x, t) = f(~k · ~x− ω~kt)

solves �ψ = 0 if and only if ω~k = ck. Such solutions are called plane waves

with wave vector ~k and frequency ω.
Another important type of solution is given by spherical waves

ψ
(k)
f (~x, t) :=

f(kx− ωt)
r

(6.4)

where k ∈ R and r := |~x| is the radial distance from the origin. For fixed

time, the value of ψ
(k)
f only depends on the distance of ~x from the origin.

As time elapses, the profile given by f spreas radially outward with speed c,
thereby decreasing in amplitude because of the 1

r
factor.

If we replace the minus sign in Equation (6.4) with a plus sign, we obtain
incoming spherical waves that converge towards the origin.
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Similar to the one dimensional case, plane waves with f(x) = ex are monochro-
matic plane waves. Again, any square integrable solution can be written as
the superposition of monochromatic plane waves through Fourier decompo-
sition:

1

(2π)3

∫∫∫
. . . d3x

with ω~k = ck.
In the case of electromagnetic waves propogating through a vacuum, we have
six three dimensional waves equations, one for each component of the electric
and magnetic fields

� ~E(~x, t) = 0

� ~B(~x, t) = 0

In addition, ~E and ~B have to satisfy Maxwell’s equations. Since ρ = 0 and
~j = 0, we have that

~∇ · ~E = 0

~∇ · ~B = 0 (6.5)

We shall focus on monochromatic plane waves and we can write

~E(~x, t) = Re( ~E0e
i(~k·~x+ω~kt))

~B(~x, t) = Re( ~B0e
i(~k·~x+ω~kt)) (6.6)

where ~E0 and ~B0 are constant vectors. They determine the polarisation
of the waves - the direction of oscillation. Inserting Equations (6.6) into
Equations (6.5) we see that

~E0 · ~k = 0

~B0 · ~k = 0

This implies that in plane electromagnetic waves, the electric and mag-
netic field vectors are perpindicular to the direction of propogation (they are
transverse waves as opposed to longitudinal waves such as sound waves).
Now the other two Maxwell’s Equations for waves in a vacuum say that

~∇× ~E = −∂t ~B

~∇× ~B =
1

c2
∂t ~E (6.7)
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Inserting Equations (6.6) into Equations (6.7) we see that

~k × ~E0 = ω ~B0

Because of the relation ω = ck, we have that

~B0 =
1

c

~k

k
× ~E0

This shows that the electric and magnetic fields are both perpendicular to ~k
and to each other.

6.4 Energy and momentum in electrodynam-

ics

Consider a system of volume V with charge density ρ(~x, t) and velocity field
~v(~x, t) which gives the current distribution ~j(~x, t). We want to compute the
rate of change with respect to time of the energy EV contained in V (also
called the power). This receives contributions from the mechanical power
of the moving charges contained in V and also from the field power.
We begin with the former. Consider the mechanical power of a point particle:

d

dt
E = ~v · ~F

where ~F is the Lorentz force acting on the particle. We have that

dEmech
V

dt
=

∫
V

~v(~x, t) ·
[
ρ(~x, t) ~E(~x, t) +~j(~x, t)× ~B(~x, t)

]
d3x

=

∫
V

ρ(~x, t)
[
~v(~x, t) · ~E(~x, t)

]
d3x

=

∫
V

~j(~x, t) · ~E(~x, t) d3x
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where we have used the fact that ~j(~x, t)× ~B(~x, t) is perpendicular to ~v(~x, t).
Using the formula for self-energy, we have that

dEfield
V

dt
=

d

dt

∫
V

[
ε0

2
~E · ~E +

1

2µ0

~B · ~B
]
d3x

=

∫
V

[
ε0
~E ·
(
∂

∂t
~E

)
+

1

µ0

~B ·
(
∂

∂t
~B

)]
d3x

=

∫
V

[
ε0c

2 ~E ·
(
~∇× ~B − µ0

~j
)
− 1

µ0

~B ·
(
~∇× ~E

)]
d3x

= −
∫
V

~E ·~j d3x+
1

µ0

∫
V

[
~E ·
(
~∇× ~B

)
− ~B ·

(
~∇× ~E

)]
d3x

= −
∫
V

~E ·~j d3x− 1

µ0

∫
V

~∇ ·
(
~E × ~B

)
d3x

= −
∫
V

~E ·~j d3x− 1

µ0

∮
SV

~∇ ·
(
~E × ~B

)
· d~S

where we have used Maxwell’s Equations, the triple scalar product identity
and the divergence theorem.

Definition 6.4.1. Given an electric field ~E and a magnetic field ~B, we define
the Poynting vector ~SPoy to be

~SPoy :=
1

µ0

~E × ~B

It is thus clear from the previous deductions that

d

dt

(
Emech
V + Efield

V

)
= −

∮
SV

~SPoy · d~S (6.8)

We can see that if we make V bigger until V → R3 and assume that the
electric and magnetic fields decay at large distances, the circulation of the
Poynting vector vanishes and we get that the total energy of the system is
conserved in time.
If we apply the divergence theorem to Equation (6.8), we arrive at the dif-
ferential equation

∂

∂t
w + ~∇ · ~SPoy = −~j · ~E
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where w = ε0
2
~E · ~E + 1

2µ0
~B · ~B. In the absence of moving charges, we obtain

a conservation law.
Conservation of momentum in electrodynamics can be shown in a very similar
way. We start with

d

dt
~p =

∫
V

~f d3x

where ~f is the Lorentz force.

Definition 6.4.2. Given an electric field ~E and magnetic field ~B, we define
the momentum density ~g to be

~g :=
1

c2
~SPoy

6.5 Fields genererated by time-dependent charge

and currents

Consider time dependent densities ρ(~x, t) and ~j(~x, t). We are interested in
the electric and magnetic fields they generate. We can once again decouple
the differential equations using the scalar and vector potentials:

�φ =
ρ

ε0

= � ~A = µ0
~j

As before, we can construct a Green’s function G� for the wave operator �
which satisfies

�G� = δ(1)(t− t′)δ(3)(~x− ~x′)

where on the right hand side, we have a one-dimension delta distribution for
the time argument multiplied by a three dimensional delta distribution for
the spatial arguments. It turns out that

G� =
1

4π

δ(1)(t′ − t+ |~x′−~x|
c

)

|~x′ − ~x|
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This is referred to as the retarded Green’s function. The description of
retarded follows from considering the potentials:

= φ(~x, t) =
1

4πε0

∫
V

ρ(~x, tR)

|~x′ − ~x|
d3x′

= ~A(~x, t) =
µ0

4π

∫
V

~j(~x, tR)

|~x′ − ~x|
d3x

where tR := t − |~x
′−~x|
c

and is referred to as retarded time. The potentials
at (~x, t) depend all space points ~x′ but at an earlier time tR. The difference
between t and tR is precisely the time an electromagnetic wave takes to travel
from the point ~x′ to ~x.



Chapter 7

Special Relativity

7.1 Main ideas and postulates

Definition 7.1.1. We define an inertial frame of reference to be a
system of observers able to report and record the time of certain events which
happen close to them. We assume that the observers within the given frame
of reference do not move relatively to each other and there is an observer
relatively close to any point in space for each frame of reference. We also
assume that all observers within a given frame of reference have their clocks
synchronised.

Assume there are two frames of reference moving with the relative speed
u along the x-axis. We can synchronise their clocks by setting them both
to the same time when the two frames of reference coincide. Obviously if
there is an event at some (x, y, z, t) in one frame then in the other frame’s
coordinate system, the event is at (x′ = x− ut, y′ = y, z′ = z, t′ = t).

Definition 7.1.2. Consider two frames of refence with coordinate systems
(x, y, z, t) and (x′, y′, z′, t′). Let an event occur in one frame of reference at
the point (x, y, z, t). Then the transformation

(x, y, z, t)→ (x− ut, y, z, t)

is called the Galilean transformation and gives the coordinates of the
event in the other frame of reference.

The principle of relativity essentially states that since space-time is ho-
mogeneous, we expect all physical laws to be the same no matter at what
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point in space the law is acting. Newtonian mechanics is obviously compati-
ble with this principle. Indeed, given any particle which is moving according
to the laws of Newton in frame at some constant acceleration ~a, we have that
m~a = ~F where ~F is the force acting on the particle. The acceleration ~a is
obviously invariant under a space-time translation and hence Newton’s laws
are the same in all inertial frames.
On the other hand, Maxwell’s equations do not seem to agree with the prin-
ciple of relativity. Consider the one-dimensional wave operator acting on the
scalar potential: (

1

c2

∂2

∂t2
− ∂2

∂x2

)
φ = 0 (7.1)

By the chain rule, we have that the Galilean transformation satisfies

∂

∂x
=
∂x′

∂x

∂

∂x′
+
∂t′

∂x

∂

∂t′

=
∂

∂x′

∂

∂t′
=
∂x

∂t′
∂

∂x
+
∂t

∂t′
∂

∂t

=
∂x

∂t

∂

∂x
+
∂t

∂t

∂

∂t

= u
∂

∂x
+
∂

∂t

It therefore follows that

∂2

∂x2
=

∂2

∂x′2

∂2

∂t2
=

(
∂

∂t′
− u ∂

∂x′

)2

Thus Equation (7.1) transforms as follows(
1

c2

(
∂

∂t′
− u ∂

∂x′

)2

− ∂2

∂x′2

)
φ = 0
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We see that the wave equation is variant under Galilean transformation and
hence Maxwell’s equations are not preserved. In particular, inside a moving
space ship, all electromagnetic phenomena should be different from those in
a stationary ship. One of the consequences of Maxwell’s equations is that
electromagnetic waves propogate in all directions equally and at the same
speed c. According to the Galilean transformations, the speed of light as
measured inside the moving space ship should be c − u. However many
experiments have been done and they all find that the speed of light c is
constant inside such a moving intertial frame. The only way to solve this
contradiction is to assume that Newton’s laws are wrong.

7.2 Time Dilation

We show that in order for the principle of relativity to hold for electromag-
netic phenomena, all processes taking place in a moving coordinate system
will be detected as occuring slower in a static coordinate system.
We can consider a simple system of two perfect mirrors A and B seperated
by a distance d between which a beam of light bounces. We can define a
clock on this system as follows: everytime the light beam hits the mirror B,
the clock ticks. Since light must travel at the same speed c in all reference
frames, this gives us the following period for the clock:

∆t =
2d

c

Now consider another identical system moving at a speed v relative to the
original resting one. Obviously, the period of the light in the moving clock is

∆t′ =
2D

c
(7.2)

where D is the length of the side of the triangle that the path of the light
forms. By Pythagoras theorem, it is easy to see that

D =

√(
1

2
u∆t′

)2

+ d2

Substituting this into Equation (7.2) we have that

∆t′ =
2
√(

1
2
u∆t′

)2
+ d2

c
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Solving for ∆t′ it follows that

∆t′ =
2d
c√

1−
(
u2

c2

)
Now subtituting in the definition of ∆t, we have the following equation

∆t′ =
∆t√

1−
(
u2

c2

)
7.3 Length Contraction

Consider the same clock as in the previous section except rotated so the light
beam travels parallel to the direction of motion. We have, once again

∆t =
2d0

c

for the period of the clock where d0 is the seperaton of the mirrors in the
static frame of reference. We show that in the moving frame, the length of
the seperation contracts. Let d denote the length of the seperation in the
moving reference frame. To an observer that sees the clock pass at a velocity
u, the light takes more time to traverse the seperation when the wave is
travelling in the same direction as the frame. It takes less time to traverse
the seperation when travelling in the opposite direction. We have that

∆t′ =
d

c+ u
+

d

c− u
Now from the previous section, we know that

∆t′ =
∆t√

1−
(
u2

c2

)
Using the three previous equations, we can eliminate ∆t and ∆t0 and we are
left with

d = d0

√
1−

(
u2

c2

)
Hence d < d0 and lengths parallel to the direction of travel contract.
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7.4 Formal Derivation of the Lorentz Trans-

formation

Convention 7.4.1. Consider a coordinate system (ct, x, y, z) we shall denote
each coordinate by

x0 ≡ ct, x1 ≡ x, x2 ≡ y, x3 ≡ z

From now on, we shall use superscripts to denote indicies and not powers
(unless explicitly stated otherwise).

Consider two references frames S and S ′ with coordinate systems (x0, x1, x2, x3)
and (x′0, x′1, x′2, x′3). We want to find four functions fµ, µ = 0, 1, 2, 3 such
that

x′µ = fµ(x0, x1, x2, x3)

Such transformations should be invertible.

Both frames are inertial which means that free bodies move along straight
lines with a constant speed. Hence

xi = Aix0 +Bi

↓
x′i = A′ix′0 +B′i

for some constants Ai, Bi, A′i, B′i. The only non-singular functions that pre-
serves straight lines are linear functions of the form

fα(xβ) = Λα
β + bα

where Λα
β is some linear map and bα is some constant. The repeated Greek

indices are summed over 0, 1, 2, 3. These depend only on the relative velocity
u between the two frames

We can choose S and S ′ such that their origins coincide at t = t′ = 0.
This means that

fα(0, 0, 0, 0) = 0
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for α = 0, 1, 2, 3. We see that in the above function we derived, bα = 0.

We define S ′ such that the y′ = plane displaces along itself and coincides
with the y = 0 plane. This means that for any x, z and t, we should have

y′ = Λ2
0ct+ Λ2

1x+ Λ2
20 + Λ3

3z = 0

for all x, z, t. This implies that Λ2
0 = Λ2

1 = Λ2
3 = 0. We can apply a similar

argument to the z′ = 0 plane to arrive at Λ3
0 = Λ3

1 = Λ3
2 = 0. At the moment,

we have the following matrix:

Λµ
ν =


Λ0

0 Λ0
1 Λ0

2 Λ0
3

Λ1
0 Λ1

1 Λ1
2 Λ1

3

0 0 Λ2
2 0

0 0 0 Λ3
3



The plane x′ = 0, as seen from S, moves to the right with a constant speed
u. Therefore the plane x′ = 0 should be mapped to the plane x = ut:

x′ = Λ1
0ct+ Λ1

1ut+ Λ1
2y + Λ1

3z = 0

for all y, z, t. This implies that Λ1
2 = Λ1

3 = 0. To summarise, we now have:

Λµ
ν =


Λ0

0 Λ0
1 Λ0

2 Λ0
3

−u
c
Λ1

0 Λ1
1 0 0

0 0 Λ2
2 0

0 0 0 Λ3
3



Switching perspectives, the x = 0 plane, seen from S, moves to the left
with the same speed u. Hence x = 0 should be mapped to x′ = −ut:

ut′ = x′ = Λ1
0ct

ct′ = Λ0
0 + Λ0

10 + Λ0
2y + Λ0

3z

Combining these two, it follows that

Λ1
0

ct

u
= Λ0

0 + Λ0
2y + Λ0

3z
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for all t, y, z. This is only possible if Λ0
2y = Λ0

3z = 0 and Λ1
0 = −u

c
Λ0

0 which
implies that Λ1

1 = Λ0
0. Hence we now have:

Λµ
ν =


Λ0

0 Λ0
1 0 0

−u
c
Λ0

0 Λ0
0 0 0

0 0 Λ2
2 0

0 0 0 Λ3
3



We should also impose the constancy of the speed of light. Any reay of
light travelling in a direction ~n should be mapped to another ray of light
travelling in a possibly different direction. We require that ~x = ~nct becomes
~x′ = ~n′ct′. Obviously,

n′i =
x′i

x′0
=

Λi
0x

0 + Λi
jx
j

Λ0
0x

0 + Λ0
jx

j

=
Λi

0x
0 + Λi

jx
j

Λ0
0x

0 + Λ0
jx

j

=
Λi

0x
0 + Λi

jn
jx0

Λ0
0x

0 + Λ0
jn

jx0

=
Λi

0 + Λi
jn

j

Λ0
0 + Λ0

jn
j

First consider ~n = (1, 0, 0), then

n′i =
Λi

0 + Λi
jn

j

Λ0
0 + Λ0

jn
j

=
Λi

0 + Λi
1

Λ0
0 + Λ0

1

We see that n′2 = n′3 = 0. Hence n′1 = 1 which gives us Λ0
1 = Λ1

0. Now
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consider ~n = (0, 1, 0):

n′i =
Λi

0 + Λi
jn

j

Λ0
0 + Λ0

jn
j

=
Λi

0 + Λi
2

Λ0
0 + Λ0

2

=
Λi

0 + Λi
2

Λ0
0

It follows that n′1 = −u
c
, n′2 =

Λ2
2

Λ0
0
, n′3 = 0. Since ~n′ is a unit vector, we have

that

1 =

√(
−u
c

)
+

(
Λ2

2

Λ0
0

)
whence it follows that

Λ2
2 = Λ0

0

√
1−

(
u2

c2

)
The same argumentation for ~n = (0, 0, 1) gives us

Λ3
3 = Λ0

0

√
1−

(
u2

c2

)
and therefore

Λµ
ν =


Λ0

0 −u
c
Λ0

0 0 0
−u

c
Λ0

0 Λ0
0 0 0

0 0 Λ0
0

√
1−

(
u2

c2

)
0

0 0 0 Λ0
0

√
1−

(
u2

c2

)


Since we assumed that y = 0 maps to y′ = 0 and z = 0 maps to z′ = 0, we
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have that

1 = Λ0
0

√
1−

(
u2

c2

)
Λ0

0 =
1√

1−
(
u2

c2

)
Hence we have the final result

Λµ
ν =


γ −βγ 0 0
−βγ γ 0 0

0 0 1 0
0 0 0 1


where γ = 1√

1−
(
u2

c2

) and β = u
c
.

7.5 Non-Relativistic Limit

In the limit v << c, we expect to recover the usual Newtonian physics. In
order to show this, we Taylor expand γ:

γ =

(
1− v2

c2

)− 1
2

= 1 +
1

2

v2

c2
+O

(
v4

c4

)
Since the speed of light is very large, the above expansion is extremely accu-
rate. We can thus write the Lorentz transformations as

ct′ = γ(ct− βx) '
(

1− v2

c2

)(
ct− v

c
x
)
' ct− v3

x3
x ' ct

x′ = γ(x− βct) '
(

1− v2

c2

)(
x− v

c
ct
)
' x− vt

We therefore recover the usual Galilean transformations.
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7.6 Lorentz Transformation as a Rotation by

a a Hyperbolic Angle

Consider two reference frames moving at a relative velocity u. We define the
rapidity variable θ such that

tanh θ =
u

c

The hyperbolic identity

cosh θ =
1√

1− tanh2 θ

implies that

γ = cosh θ, βγ = sinh θ

Hence we have that the Lorentz transformation satisfies
ct′

x′

y′

z′

 =


cosh θ − sinh θ 0 0
− sinh θ cosh θ 0 0

0 0 1 0
0 0 0 1




ct
x
y
z


We can also convert the hyperbolic functions to trigonmetric functions to see
that the Lorentz transformation is a rotation by an imaginary angle iθ.

7.7 Relativity of Simultaneity

Consider two reference frames S and S ′ and let P1 and P2 be two events in
S with coordinates

P1 = (t, x1, x2, x3), P2 = (t, x′1, x′2, x′3)

Due to the Lorentz transformation, these events do not occur simultaneously
in S ′:

P1 = (tγ − βγx1, x2, x3), P2 = (tγ − βγx′1, x′2, x′3)

They are infact seperated in time by βγ∆x where ∆x is the spatial difference
between the events in S.
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7.8 Addition of Velocities in Special Relativ-

ity

Consider two reference frames S and S ′ moving with relative speed v along
the x-axis. Suppose that the motion of a body in S is described by ~x(t) =
~ut + ~xinitial. By transforming ~x and t to S ′, we again get another linear
function

~x′(t′) = ~u′t′ + ~x′initial (7.3)

We want to find ~u′ in terms of ~u and v. Without loss of generality, we
can assume that ~xinitial = 0. Indeed, if it is not, we can just rebase the
coordinate system of S to let the origin coincide with ~xinitial. By the Lorentz
transformation, we have that

ct′ = γ(ct− βx) = γ(c− βux)t
x′ = γ(x− βct) = γ(ux − βc)t

y′ = y = uyt

z′ = z = uzt

Now, using the Lorentz transformation to express t in terms of t′, we get

x′ = γ(ux − v)
ct′

γ(c− βux)

y′ = uy
ct′

γ(c− βux)

z′ = uz
ct′

γ(c− βux)

Comparing with Equation (7.3), it follows that

u′x =
ux − v
1− vux

c2

u′y =
uy

√
1− v2

c2

1− vux
c

u′y =
uz

√
1− v2

c2

1− vux
c
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Example 7.8.1. Consider an object emitting light homogeneously in all di-
rections moving at a speed v. We focus on the rays of light that are moving
directly up and down with velocities u = (0,±, 0). Applying the Lorentz
transformation, we see that

u′x = −v, u′y = ±
√
c2 − v2

We see that |~u| = c so the speed of light is indeed constant but it is now
directed along a different vector. To find the angle this vector makes with the
x-axis, note that

− v = |~u| |~ex| cos θ = c cos θ

=⇒ cos θ =
−v
c

We see that for v very close to c, the angle θ is very small. Hence half of all
the radiation will be emitted inside a tiny cone in front of the moving particle.

7.9 Relativistic Dynamics

Proposition 7.9.1. Consider a particle moving at a velocity ~v. Then the
quantity

~p = m(|~v|)~v

is conserved and is called the relativistic momentum. Here

m(|~v|) = m0γ

is the relativistic mass.

Proof. We only derive the formula for relativistic mass. Consider two identi-
cal particles moving towards each other with exactly equal velocities. Their
total momentum must be zero. After the collision, their directions of motion
must be exactly opposite each other as implied by conservation of momen-
tum. Note that they may still scatter at an angle.This situation is the one
described by Frame 1 in the picture below:
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Now consider a second frame moving along the x-axis with speed equal
to the x component of the first particle’s velocity. In such a frame, the x
coordinate of the first particle will not change. We denote the speed of this
particle by w and the other particle’s speed by w.
We again consider another frame now moving along the x-axis with speed
equal to that of the x component of the velocity of the second particle. By
symmetry, we have that the first particle’s speed is v and the second one’s
w.
We first note that the speed of Frame 3 relative to Frame 2 is vx = vcosα.
Using the addition of velocities formulae, we have that the y components of
the velocities of the first particle w (in Frame 2) and v sinα (in Frame 3) are
related by

w = v sinα

√
1− v2cos2α

c2

1− v2cos2α
c2

=
v sinα√

1− v2cos2α
c2

We hence have a relation between w and v. Now we require that the relativis-
tic momentum is conserved in Frame 2. Along the y-axis, the conservation
should give

2m(v)v sinα = 2m(w)w

=⇒ m(w)

m(v)
=
v sinα

w
=

√
1− v2 cos2 α

c2



CHAPTER 7. SPECIAL RELATIVITY 74

Since the scattering angle is a free parameter we can, and will, choose it
to be very small. This means that in Frame 1, both particles travel almost
parallel to the x-axis and barely touch. In Frame 2, this will result in a tiny
angle α and very small w. We can take the limit as α,w → 0 and we arrive
at

m(v) =
m0√
1− v2

c2

Proposition 7.9.2. Consider a particle moving at a velocity ~v. Then its
kinetic energy is given by

E(~v) = m(|~v|)c2

Proof. By Newton’s Second Law, we have that

~F =
d~p

dt

We know that the change to the energy of the system is given by the work
done ~F · ~r. Therefore

dE = ~F · ~r

=
d~p · d~r
dt

but d~r
dt

is just the velocity of the particle v. Hence we get

dE = d~p · ~v
= d[m(|~v|)~v] · ~v
= dm|~v|2 +m(|~v|)d~v · ~v

= dm|~v|2 +m(|~v|)1

2
d[|~v|2] (7.4)

Now using the fact that v2 = c2
(

1− m2
0

m2

)
and taking the differential, it

follows that

dv2 = c2m2
0

2dm

m3
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Inserting this into Equation (7.4) yields

dE = dmc2

(
1− m2

0

m2
+ c2m2

0

dm

m2
= dmc2

)
Which leaves us with

E(v) = m(v)c2 + k

for some constant k. Since the energy is always defined up to a constant, we
can set it to zero to arrive at the desired result.

Remark. For v << c, we can Taylor expand to get:

E(v) = m0c
2 +

1

2
mv2 +O(

v4

c20
)

Again, the constant can be ignored and we recover the classical kinetic energy.



Chapter 8

Lorentz Group

Definition 8.0.3. We define the space-time metric (or interval) to be the
following quantity

ds2 = (ct)2 − x2 − y2 − z2

It is the measure of distance between two points in space-time.

Proposition 8.0.4. Consider two frames of reference S and S ′ moving with
relative speed v with coordinates (t, x, y, z) and (t′, x′, y′, z′). Then the Lorentz
transformation between S and S ′ leaves the space-time interval invariant.

Proof. We need to show that (ct)2 − x2 − y2 − z2 = (ct′)2 − x′2 − y′2 − z′2.
We shall prove this using the rapidity parametrisation. Let θ be the rapidity
variable such that tanh θ = v

c
. Then cosh θ = γ and sinh θ = βγ. Then we

have that

(ct′)2 − x′2 − y′2 − z′2 = (ct cosh θ − x sinh θ)2 − (−ct sinh θ + x cosh θ)2 − y2 − z2

= c2t2 cosh2 θ − 2xct cosh θ sinh θ + x2 sinh θ

− c2t2 sinh θ + 2xct sinh θ cosh θ − x2 cosh2 θ − y2 − z2

= c2t2 cosh2 θ + x2 sinh θ − c2t2 sinh θ − x2 cosh2 θ − y2 − z2

= c2t2(cosh2 θ − sinh2 θ) + x2(− cosh2 θ + sinh2 θ)− y2 − z2

= c2t2 − x2 − y2 − z2

as required.

76
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Proposition 8.0.5. Consider the set

L =
{

Λ |ΛTηΛ = η
}

where

η ≡


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


Then L is a group with the composition of transformations as its binary
operation. It is referred to as the Lorentz Group.

Proof. We first show that L contains the identity transformation. This is
trivial as indeed 1Tη1 = η.
Now let Λ ∈ L. We have to find a Λ−1 ∈ L such that ΛΛ−1 = 1. Since
ηη = 1, it follows that ηΛTηΛ = 1. Hence Λ−1 = ηΛTη.
Finally, we show that given Λ1,Λ2 ∈ L, Λ1Λ2 ∈ L. By definition we have
that ΛT

1 ηΛ1 = η and ΛT
2 ηΛ2 = η. Obviously we have that

ΛT
2 ηΛ2 = η

=⇒ ΛT
2 ΛT

1 ηΛ1Λ2 = η

=⇒ (Λ1Λ2)Tη(Λ1Λ2) = η

hence Λ1Λ2 ∈ L.

Remark. We note that the condition ΛTηΛ = η is equivalent to Λ preserving
the space-time interval. Indeed

~x′Tη~x′ = (Λ~x)Tη(Λ~x) = ~xTΛTηΛ~x = ~xT (ΛTηΛ)~x = ~xTη~x

Hence Λ ∈ L if and only if Λ preserves the space-time interval.

8.1 Lorentz Tensors

Convention 8.1.1. We will use the following conventions:

• Lorentz transformation matrix - Λα
β
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• Inverse of transpose of Lorentz transformation matrix - Λ β
α

• Constant 4x4 matrix η - ηαβ or ηαβ

• Constant 4x4 identity matrix - δαβ

where α refers to a row element and β refers to a column element.

Definition 8.1.2. Consider a vector ~x that transforms under the Lorentz
transformation as follows

~x′ = Λ~x

Then we say that ~x is a contravariant Lorentz vector. The indices of
~x are denoted by upper Greek indices xµ. The transformation rule is thus
written

x′α = Λα
βx

β

Definition 8.1.3. Consider a vector ~x that transforms under the Lorentz
transformation as follows

~x′ = (ΛT )−1~x

Then we say that ~x is a covariant Lorentz vector. The indices of ~x are
denoted by lower Greek indices xµ. The transformation rule is thus written

x′α = Λ β
α xβ

Example 8.1.4. The vector(
∂

c∂t
,
∂

∂x
,
∂

∂y
,
∂

∂z

)
is covariant. Indeed,(

∂

c∂t
,
∂

∂x
,
∂

∂y
,
∂

∂z

)
=

(
c∂t′

c∂t

∂

c∂t′
+
∂x′

c∂t

∂

∂x′
+
∂y′

c∂t

∂

∂y′
+
∂z′

c∂t

∂

∂z′
, . . .

)
Now using ct′ = Λ0

0ct+ Λ0
1x+ Λ0

2y + Λ0
3z and the other Lorentz transfor-

mations for the other coordinates, it follows that(
∂

c∂t
,
∂

∂x
,
∂

∂y
,
∂

∂z

)
=

(
Λ0

0

∂

c∂t′
+ Λ1

0

∂

∂x′
+ Λ2

0

∂

∂y′
+ Λ3

0

∂

∂z′
, . . .

)
= ΛT

(
∂

c∂t′
,
∂

∂x′
,
∂

∂y′
,
∂

∂z′

)
Multiplying on the left by (ΛT )−1, we arrive at the desired result.
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Remark. In order to conserve Einstein’s summation convention in tensor
index notation, we require the following two rules:

• Dummy indices must be in opposite positions - vµuµ

• Positions of free indices must be the same on both sides of the equation
- vµ = uµ

Example 8.1.5. As a consequence of the new notation, we have the following
identity

δαβ = Λ α
µ Λµ

β

8.2 General Lorentz Tensor

Definition 8.2.1. The general Lorentz tensor is an object with an arbi-
trary number of indices T β1 β2 ...

α1 α2 ... . They transform according to the posi-
tion of the corresponding indices.

We can easily build new tensors out of old ones. For example, we can
convert a contravariant vector uµ to a covariant one uν as follows

uν = ηνµu
µ

We can check that uν is indeed covariant:

u′ν = ηνµu
′µ = ηνµΛµ

αu
α = ηνµΛµ

αη
αβuβ = Λ β

ν uβ

We can always raise or lower indices of any Lorentz tensor using η. For
example, consider the tensor T µν which is a (contra,co)-variant tensor. T µν
can be transformed into 3 other tensors (we pack T µν into a 4× 4 matrix for
visualisation purposes):

• T µν = T µα η
αν - equivalent to the matrix Tη

• Tµν = ηµαT
α
ν - equivalent to the matrix ηT

• T ν
µ = ηµαT

α
β η

βν - equivalent to the matrix ηTη
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We can also create new tensors by multiplying two tensors. For example
aµbν .
We can also contract indices of a Lorentz tensor to reduce the rank of a tensor
by two. For example, consider the rank 3 tensor Tαβγ . We can generate a

new rank 1 tensor by contracting the indices as follows: uα = Tαββ .

Definition 8.2.2. Consider the two vectors ~a and ~b. We define the inner
product of ~a and ~b to be the product aµbµ.

Proposition 8.2.3. Consider the two vectors ~a and ~b. Then their inner
product is Lorentz invariant.

Proof. Let ~α′ and ~β′ be the vectors ~a and ~b under the action of the Lorentz
transformation. Then

a′µb′µ = (Λµ
αa

α)(Λ β
µ bβ) = aαΛµ

αΛ β
µ bβ = aαδβαbβ = aαbα

as required.

Example 8.2.4. There are many examples of inner products which gives us
important Lorentz invariants:

• δµxµ = 4

• xµxµ = xµxνηµν = (x0)2 − (x1)2 − (x3)2 = (ct)2 − x2 − y2 − z2 - this
is just the space-time interval which have shown to be invariant in the
previous section.

• δµδµf =
(

1
c2

∂2

∂t2
−∆

)
f - this is just the wave operator. From this,

we can see that the Maxwell’s equations in the vacuum are Lorentz
invariant.

Definition 8.2.5. Let aµ be a covariant (or contravariant) vector. We have
the following three classifications of aµ based on their inner product:

• Light-like vectors - aµa
µ = 0. For example, take aµ = (1, 1, 0, 0).

Then aµ = aνη
νµ = (1,−1, 0, 0) and thus aµa

µ = 0.

• Time-like vectors - aµa
µ > 0. For example, take aµ = (1, 0, 0, 0).

(this vector connects two events which are causually connected - the
second event lies within the lightcone of the first event)
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• Space-like vectors - aµa
µ < 0. For example, take aµ = (0, 1, 0, 0).

(this vector connects two events which are causually disconnected - the
second event lies outside the lightcone of the first event)

Example 8.2.6. Lorentz invariant tensors do not have to be rank 0. One
example is the ηµν tensor. It has the non-trivial transformation property
η′µν = Λµ

αΛν
βη

αβ. But Λµ
αΛν

βη
αβ = ηµν by the definition of a Lorentz

tensor.

Example 8.2.7. The 4-dimensional Levi-Civita (epsilon) tensor εαβµν is a
pseudo-invariant tensor.The epsilon tensor transforms as follows:

ε′α
′β′µ′ν′ = Λα′

αΛβ′

βΛµ′

µΛν′

νε
αβµν

In particular for

ε′0123 = Λ0
αΛ1

βΛ2
µΛ3

νε
αβµν

On the right hand side, we have to sum over all the permutations of 0123
thus we have 4! = 24 terms on the right hand side of the form

Λ0
0Λ1

1Λ2
2Λ3

3 − Λ0
1Λ1

1Λ2
2Λ3

3 + . . .

We can recognise this as the determinant of the 4× 4 matrix Λ. Hence

ε′0123 = det Λ

We can apply some linear algebra to ΛTηΛ = η to see that (det Λ)2 = 1.
Thus det Λ = ±1. We see that ε keeps its sign for half of all transformations
and changes it for the other half. We call ε a pseudo-invariant tensor - it is
invariant up to a modulo.


